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Final Report on NAS8-37586

Under this contract UAH was involved in a collaborative program with MSFC to
carry out design and development activities for the Ultraviolet Imager to be flown on the
Polar Spacecraft of the International Solar Terrestrial Physics (ISTP) Mission. In
addition several other related tasks were carried out as per statement of work. These
are described below.

The following tasks were performed:

1. Design and Fabrication of Prototype/Engineering Model of the UVI
Imager

Following completion of the conceptual design and table top testing at UAH,
modifications were identified in accordance with the test results and, a subcontract was
awarded to Perkin Elmer Corporation to optimize the UAH design and to develop and
fabricate an engineering model of the optical bench.

The program was initiated with a statement of work to Perkin Elmer on
2/15/89. This was followed by a meeting on March 31, 1989. Work commenced with
UAH issuing a letter of intent on 4/17/89. However, to provide the funding required to
support the overall effort at Perkin Elmer, additional funding had to be provided through
a second contract supporting ISTP activities at UAH, namely NAS8-36955, an umbrella
contract with MSFC that was used to provide the balance in the short turn-around needed
to get the Perkin Elmer effort going on schedule. The funding was provided under
Delivery Order Number 59.

The work was divided into 2 phases. During phase 1 the following tasks were
accomplished.

The system and subsystem level requirements were defined

The UAH optical design was optimized

A sensitivity analysis of the final optical design was performed

A straylight analysis was performed and the conceptual layout of the
baffles was done with a rework done under D.O. 59

The conceptual layout of the optical bench was generated, with final fine-
tuning done under D.O. 59

The design and layout of the optical elements was finalized and alignment
tolerances and mounting interfaces defined

During Phase II an engineering model of the optical bench was fabricated and
detailed engineering drawings developed. Copies of the drawings which were
preliminary are attached.

The unit incorporated appropriate interfaces for the detector assemblies, filter
wheel and other system interfaces. Critical components were lightweighted. A coarse
NASTRAN model of the optical bench was produced and the delta temperature limits were



analyzed.A weightanalysiswas performed. System alignment tests were performed and
an alignment procedure generated.

The deliverable of a mid-term, final report and Engineering unit Ultraviolet
Imager with associated engineering drawings were delivered to MSFC on June 11, 1990.

Note: During the design development UAH identified the need for a second system of
reflective filter components in the optical train which were needed to provide additional
filtering to meet the UVI science spectral purity requirements. To incorporate this
filter requirement Perkin Elmer was requested to insert a 45 ° reflective surface at the
entrance aperture to the system and to fold the optical beam through 90 ° . This effort
was carried out under subcontract NAS8-36955 - Delivery Order Number 59 and will
be reported on separately. This was the main task carried out on D.O. 59.

Attached as Appendix A to this report are the Mid-Term and Final Reports
received from Perkin Elmer (now Hughes Danbury). Note: Hughes Danbury did not
separate out the two tasks in their reports and their final design reflects the above-
mentioned changes. The reports give details on the list of tasks discussed above including
the performance evaluation of the design.

It is noteworthy that the UAH design which was fine-tuned by Perkin Elmer
constitutes a technological breakthrough in far ultraviolet imaging in that it represented
the first high speed (f/# = 2.8) imaging camera with high spatial resolution developed
to date for this wavelength regime. The sensitivity improvement of the instrument over
existing systems exceeded a factor of 10, placing UAH at the forefront of this technology.

2. Preliminary Design Review

UAH supported the UVI PDR at MSFC on October 17, 1989 in the following areas:

Presentation of the optical system (not included in the attached report on
PDR)

Presentation of the data analysis software

Report on the status of the filter design

Note: The data analysis software flowchart shown in the PDR report was
generated by Science and Engineering Associates. However, UAH provided the science
algorithms needed to evaluate the dependence of intensity ratios on the characteristic
energy of precipitating particles. UAH presented the UVI scientific goals and described
the model development that has been used to support the UVI requirements definition.

Relevant sections of the UAH contributions to PDR can be found in the copies of
the PDR presentation included as Appendix B and in the Perkin Elmer reports (Appendix
A). Because Perkin Elmer could not attend PDR, the optics review was conducted with
the GSFC review team optics specialist in a splinter session telecon with Mr. Andreas
Nonnenmacher of Perkin Elmer. Dr. D. G. Torr convened this session.

3. Vacuum Ultraviolet Filter Design

Narrowband filters with the spectral performance specified for the UVI had
never been fabricated before. In order to meet the spectral requirements of the filters,
a novel design strategy was developed. First, it was discovered that suitable materials
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for use in the VUV had never been identified, and second, the effects of absorption which
occurs in the VUV had not yet been incorporated into thin film design theory. Third,
accurate measurement techniques for determining the transmission and reflectance of
thin films (needed for the determination of optical constants) had not yet been developed.

All these shortcomings were addressed as follows:

A technique was developed for the experimental determination of the
reflectance and transmission of thin films and substrates in the VUV

A mathematical algorithm was developed for the retrieval of optical
constants of thin films and substrates from measurements of their reflectance and
transmittance.

Thin film multilayer theory was modified to include the effects of
absorption. This essentially involved starting from scratch with Maxwell's equations.

A detailed report of the above work was published in two papers entitled "Vacuum
Ultraviolet Thin Films 1: Optical Constants of BaF2, CaF2, LaF2, MgF2, AL203, HFO2 and
SiO2 Thin Films" and "Vacuum Ultraviolet Thin Films 2: Vacuum Ultraviolet All-
dielectric Narrowband Filters" attached as Appendix C.

Reprints of both papers are attached. However, it must be noted that the work
reported in these two papers covers the overall development of the filter program
during the course of the ISTP program under contracts NAGS-086, NAG8-639, NAS8-
37576, and D.O. 59. The final reports on the above four contracts describe the early
phase of the work including establishing a VUV coating facility at UAH, debugging it, and
developing the state-of-the -art filter technology in existence at UAH today. The
fabrication of the engineering model filters being done under this contract.

This work will have very broad applications in NASA and will open up the VUV to
high resolution interferometry, photometry and high powered VUV lasers with the
future development of Fabry-Perot etatons, beam splitters and high reflectance
mirrors.

At the time of PDR two prototype filters had been developed and their spectral
characteristics are given in the PDR report attached as Appendix B. Also shown in the
PDR report are the characteristics of commercially available VUV filters. A comparison
of these with the UVl filters demonstrates that we have achieved an order of magnitude
improvement in performance. The filter at 135.6 nm is a narrowband filter, and the
filter labeled LBH,oNG is a specially designed broadband filter with a rectangular

bandpass which meets the specific requirements of the ISTP science.

Fabrication of the flight filters was carried out under the prime contract NAS8-
38145 and is described separately in the reports on that contract.

4. Auroral Energy Deposition Code

auroral
code is

UAH was also responsible for the development of a computer code to calculate the
energy deposition rate from the images to be taken by the UVl instrument. This
needed for two purposes:
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.

the UVI.
To determine what wavelengths and filter characteristics are needed for

2. To provide the auroral source function to a global ionospheric model
which will be used by the ISTP community in the interpretation of the measurements
taken.

This task was a major undertaking and under NAS8-37586 the code was
developed to a point where the filter design requirements could be finalized. Results
achieved to date were published in the Journal of Geophysical Research under the title,
"Auroral Modeling of the 3371 A Emission Rate: Dependence on Characteristic Electron
Energy." In addition the application of this code to interpretation of the UVl images was
published in the same journal under the title, "The Dependence of Model OI 1356 A and
N2 LBH Auroral Emissions on the Neutral Atmosphere". Other relevant associated papers
partially supported under this contract are also attached as Appendix D.

5. Model of LBH Vehicle Glow

This component of the work was carried out to study the effects of optical
contamination due to interactions of the spacecraft with the natural environment.
Previous observations of Vacuum Ultraviolet glow had been observed on Spacelab 1 and
on the DoD satellite $3-4. A preliminary model of a mechanism that could generate the
glow was developed under NAS8-057 "Assessment of Vehicle Contamination In Spacelab
1 Spectroscopic Data." The model invoked surface production (and desorption) of
metastable N2(A) via surface recombination of atomic nitrogen. The N2(A) is then

collisionally excited to the alHg state which radiates in the LBH bands. However, no
adequate mechanism for the production of surface N could be found. In addition the
mathematical development of the mechanism to account for the altitude dependence of the
LBH glow was incorrect. Nevertheless, the basic concept of surface production of N2(A)

leading to alHg was a major conceptual step forward. The calculations also utilized the
concept of a gas build-up on vehicle surfaces which D. Torr had previously developed in
conjunction with R. Rantanen of Science and Engineering Associates, Inc. This approach
also proved to be crucial in the development of the understanding of the glow.

Under the current contract the following new developments occurred:

1. A source for surface N was found. It was argued that ambient N2
impacting the vehicle surface would acquire vibrational excitation which could provide
the exothermicity needed for the reaction

N2(X1T.+g) v > 13 + O --> NO + N

to proceed, thereby providing an abundant source of surface N.

2. The surface chemistry was updated to take account of the production and
loss mechanisms for N2(X) v >_13, O, N and N2(A ).

,

included.
The effects of radial outflow on the N2(A) gas cloud distribution was

4. An analytical formulation of the model was generated in which the scale
height dependence of both the N2(A) and N2(alHg) could be easily predicted. Previous

calculations of Rantanen and Gordon of the re-emitted gas cloud around a lm disk were
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scaled to provide an estimation of the contaminant cloud concentrations. The model
correctly predicted both N2 LBH and Vegard Kaplan (VK) emission intensities for the
glow observed on Spacelab 1 and $3-4 as well as the height dependence observed on the
$3-4 satellite. A paper reporting these results was submitted for publication to the
Journal of Geophysical Research, and a copy of this version of the paper is attached as
Appendix E. However, one reviewer argued that VK emissions were not observed on $3-
4, and thus questioned the validity of the model. This was the status of the paper at the
conclusion of the work under this contract. Since that time, the work has been continued
by Science and Engineering Associates under DoD funding and it appears that the conflict
with the $3-4 data will be resolved.

6. Laboratory Measurement Program of Collision Cross-Sections

Dr. C. Keffer was supported for the period June 1 through September 30, 1989
on this contract. During this period the following tasks were accomplished:

Completed drawings for using the new large vacuum chamber as an EUV
calibration facility.

- Implemented the EUV calibration facility and conducted tests on a CCD
detector system.

- The cross-section chamber was assembled which was delivered mid July,
1989. This task involved numerous minor time consuming activities. For example, the
rotary platform did not turn freely when installed, because the mating flanges were not
flat. All parts had to be cleaned before use of the 5 eV O beam. Assembly was completed
by mid September.

The system appeared to be working satisfactorily upon pump-down.

Development of the system software was continued.

Alignment tests commenced mid September, but it was found that the
chamber goes out of alignment while under vacuum. Additional hardware was ordered to
repair the problem.

This effort represented all the work done on the establishment of the
cross-section facility at MSFC under this contract. Continued work on this project was
funded under other contracts.

7. Support of ISTP Meetings

UAH personnel attended and participated in the ISTP design review meetings at
GSFC and GE, Science Working Group meetings and meetings held with the NASA
Headquarters Program Office personnel to resolve the issue of merging the UVl and
Visible Imager teams of Iowa and Johns Hopkins Universities.
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Research Administration

The University
Of Alabama
In Huntsville

Huntsville, Alabama 35899

(205) 895-6000

Tetefax: (205) 895-6677

MEMORANDUM

TO :

FROM:

Dr. D. G. Torr

Physics

Kathy Niemi _-""_

Contract Assistant

J

SUBJECT: Final Report for SUB89-I17 amd SUB90-064

DATE: August 6, 1990

I have enclosed a copy of the final report on the above

referenced subcontracts. If this report satisfactorily meets

the reporting requirements of these subcontracts and all

deliverables have been received and accepted please sign the
• ° • / ,

concurrence line below slgnlfylng such and return thls

memorandum to me.

If you have any questions,

number. Thank-you.

I can be reached at the above

J

Appear. D. G. Torr

An Affirmattve Act_on/Eaual Ogportun_lv mstl_uIion



HUGHES

Danbury Optical Systems, Inc REgE, ;

Universitv of Alabama

Research Administration

Huntsville, AL 35899

Attention"

Subject'

Reference

CD-JMC-i611

July 16, 1990

R. McKinley

Ultra-Violet Imager Final Report

Subcontracts SUB89-I17 and SUB90-064

Dear Ms. McKinley"

Enclosed is a Final Report for the Ultra-Violet Imager Optical

System This document is submitted in accordance with final report

requirements and completes our contractual obligations under the

referenced subcontracts•

Very truly ",'ours,

HUGHES DANBURY OPTICAL SYSTLMS

_ean >I. Cassavechia

Principal Contract Administrator

JMC/cac

Enclosure

Pho_e!2,::_, _97 :_'::': _a, 'Z:7 _s" -•'_'
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1. Introduction

This report summarizes the approach taken and analyses performed in

deriving the optical performance error budget for the International Solar-Terrestrial

Physics Ultra-Violet Imager (UVI).

Presently under contract to the University of Alabama/Huntsville for the UVI

engineering model (Subcontracts SUB89-117 and SUB90-064), Hughes DOS

responsibilities formally encompass only the UVI telescope, i.e. the three off-axis

aspheric mirrors and the structure required to maintain alignment between these

optics, telescope baffling, interfaces to the spacecraft and MSFC hardware, as well as

the associated systems engineering, and optical (encircled energy and straylight

performance) and structural dynamics analyses.

Additional analyses, primarily a detailed thermal analysis of the instrument to

determine ground-to-orbit and on-orbit environments, are being performed by

MSFC. As results from these analyses are released, appropriate revisions to the

error budget will be made.



2. Ultra-Violet Imager Mission Description

The Ultra-Violet Imager mission objective is to spatially and temporally map the

aurora oval in the vacuum ultra-violet region of the spectrum, thereby providing a

description of the Earth's magnetic field boundaries. This in turn offers one insight

into the behavior of the energetic particles associated with the solar wind. In

particluar, total particle energy in-flux, particle acceleration processes, and

characteristic energies of incoming particles can be determined. A major mission

objective is the ability to image both the sunlit and nightside aurora, therefore

requiring an instrument with extremely good straylight rejection and out-of-band

rejection capabilites.

UVI is to be mounted on the single-axis despun platform of the POLAR

spacecraft which will orbit the earth in a highly elliptical polar orbit, providing

viewing of the entire northern and southern hemispheres. Since observation of the

entire aurora oval is desired at orbit apogee (approximately 9 earth radii), the UVI

telescope has been designed with an 8 ° circular full field-of-view.



3. UVI Telescope Description

The Ultra-Violet Imager telescope being fabricated is a three mirror design with

an effective focal length (EFL) of 123.97 mm and an entrance pupil diameter of 42.98

mm implying a telescope speed of f/2.88. However, since the aperture of the system

is 67.28 mm eccentric to the optical axis, the system is, from an optical design point

of view, effectively an f/0.7 system, making it an extremely fast telescope.

Figure 3.1 shows a functional plan view of the final optical layout. Depicted

are optical element bodies (without mounting flange details), mirror body

diameters, and nominal dimensions between optics showing axial locations and

how far off-axis each element is located. Note that the filter mirror (refer to Figure

3.5) is not depicted here. Table 3.1 provides some nominal system parameters.

Table 3.1 UVI System Parameters

Telescope EFL:

Entrance Pupil o:

System f/#:

Full Field of View:

Field Bias:

Plate Scale:

Detector Pixel Size:

123.968614 mm

42.976800 mm (off-set 67.2846 mm from optical axis)

2.884547

8 ° (circular)

-6 °

2.1637 mm/degree

54 _m x 32 _rn (apparent)

The original candidate three mirror optical system with a -6.25 ° field bias (Figure

3.2) was provided to Hughes DOS by MSFC. Using MEXP, a HDOS proprietary

%





optical analysis Code, preliminary analyses showed that the system had relatively

poor on-axis encircled energy (EE) performance (48% in a 27 _tn radius) which

varied greatly across the total FOV from a minimum of 31% (at -4o,0 °) to 87% (at

+4o,0 °) in the 27 Ixm radius.

The three mirror system was subsequently optimized adjusting the spacings

between the optics, changing the field bias to -6.0 °, and altering the aspheric terms of

the three mirrors (Figure 3.3), resulting in improved on-axis performance as well as

minimizing variations across the field. The on-axis EE performance was improved

to 71% in a 27 _m radius, and the EE variation across the FOV ranged from 71% (at

0 °, 0 °) to 86% (at -4 °, 0 °) in the 27 _n radius. Figure 3.4 show spot diagrams for this

system. Figure 3.5 show the final instrument configuration with the reflective filter

mirror in front of the transmissive filters. This change was made because of filter

fabrication constraints and provides for improved performance in terms of

straylight rejection.



Figure 3.2

UVI - Original Optical Prescription



!
(

/
./

./

/ TORR _S

14-_2:a. 1

TELESCOPE

4/1 8/89

0
0

O_

O0

0
(:3

O_

(:3
(:D

0

I

0.00
t

40.00
I

80.00 - r._LEr--_ "_,C

. -- ,¢'_ f,.
_.L_ ,.., ' "_

ORIGINAL PAGE IS

OF POOR QUALITY



!,3_0,-!

_AUELE_TH

_0. SURFA'_E TILT

TYPE TYPE

:'H! 7,_2.":!?E-{_5

[IIF_RACT RAD!US THICXRESS _D-I_DEX HI-(ROEX !.O!RBEX ._.E GLASS

TYPE NO: RhM_

C.ENTR_:RCE 0_0000 I.()000i)01,000000 1.000000

PUPIL

i SPHERE _IORMAL IIIFIII!TE 0,0000 1,000000 !,000000 t,000000 0,00 AIR

CI.EAR OUTER

AP_RT BOU_}

2 SPHERE I_FIRITE 5,0000 1,4156_0 1,41_660 1,41_660 0,00 MGF2

3 SPHERE c_J_J_O_J I_IFINITE 0,0000 1,000000 1,000000 _,00(_000 0,00 _IR 44,77 0,00

4 SPHERE NORMAL INF!I_ITE 81),7123 1,000000 1,000000 1,000000 0,00 ,_IR 179,34 0,:)0

ASPHERE t_, _._,,_ -152,3S6B -70,129q -!,000000 -!,0000_0-!,000000 0,00 -AIR
!?_,B3 0,00

6 ASPHERE SF-__.O_Jb___,/ -B3,4644 17/_,6S70 1,000000 1,00_)000 Io00_)000 0,00 AIR

7 ASPHERE T_}_T_X}I.!/ -!7q,21S5

B SPHERE _"c._2c._._ I_IFINITE

-IBB._3_B -!.000000 -_,¢00000-}.000000 0,0(, -AIR

-0,4200 -!,000000 -I,000000-i,000000 0,00 -AIR

_2,!B 0,_0

..... 4 0,_0

TABLE OF DECE_TRATIONS,TILTS AND ROTATIONS

_40. IYPE

I i

4 i

X-DEC.

(Y-TILT) (Z-TILT)

Y-DEC. Z-))EC, [HETA Z TH,_[A Y THETA X

O,O0000C'E÷O00,O00000E÷O0-6,000000E÷O00,O0000OE'+O0 (,,O00000E+O'}

6,7_,_0.+.i O.CO0000E÷O00,O00000E÷OO O,OOO_)OOE÷O00,O00OOOE÷Or.,

EPsllon

HO, (CC÷I,O)

5,057000E-01

6 -5,224000E-01

8,730000E-01

SURFACE TYPE 2 ASPHER!C COEFFICIENTS

C' D' E' F'

O_OO0000E+_ 1,471127E-!3-.,_9646._E-I,8,I0132_E-22

O.O00000E+O0 1.793_9E-0O-I.95_79E-12 7,-:X7767E-16

O_O00000ETK)O-6,07_32_E-t4 3,2_80.37E-L8 -I,50550_E-22

.........

oF ,auA  .

FIRST ORDER PARA_ETEES O_ 'r-MERIDIONALPI.ARE

MEASURED FROM FIRST SURFACE MEASURED FROM LAST SURFACE

OBJECT DSTNCE EIITR,PUP,OISTFRST,PPAL,PNT EFF,FCL,U!BTH SCND,PPAL,PNT EXT,PUP3STNC IMAGE DISTRCE

INF 0,000000 -501)_58174 127,0_._/4 -_17,99t_.4_ -_44,_00SI -i_9,3_4770

OBJECT HEIGHT ENTR,PUP,D!AM OBJT,SPCE,FNO IRF,OBJCT,FNO I_GE,SPCE,FRO EXT,PUPL_IqA_ !MhGE _IGHT

(NF 42,Y74HO0 !_!F _,00]C,94 3,00._094 -14,777_6._ !B._IB674

MAGNIFICATIOIISEM!A#_G,FIELDBACK VTX,D!ST BARREL LEIIGTH FR_,T,VTX,DISTSEMIANS,F]FLD I_EMAGP,!F!ChTIO._!

O,O000OO 8,O00_)OO IRF 19_,27_9Y00 2,_Ht;%_.O ','_,2_Z,;_68 T_.F

APT,STOP DIA_ APT,STOP DIS÷ FP,OM SF:FCE.tTOIIllI$11III_x FLD,STOP .nl,_,F.FLD,_;_.nPDIS.T FP,OK c.k'FCZ,::O

42,97_q00 0,..n.OOC.C0 _, 36.27_,'d4Y -1_.9. _C477 n '

_FOCAL CCDE TARGET ']BJZ_IST TA?GET F L, !!BJ,K_JFI'.'=6'SS:]C_LOF_ '(_ _Or- r'



Figure 3.3

UVI - Optimized Optical Prescription
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1,3,0_-I
'_ WAVELE]_GTH

" (_FOP.-a_?

NO, SURFACE TILT DIFFRACT

TYPE TYPE TYPE

0 ENTRANCE

PUPIL

I SPHERE NORMAL

/ /_._..:./m.)2_C u.p_._

0.213860 0.213B60 0.213860 PHI 3.247676E-.04

RADIUS THICKNESSMD-INDEX HI-INI)EXLO-INI)E](ABlE 6LASS I].EAR

NO. _ APERT

0.0000 1,000000 1.000000 1,000000

OUTER
BIll)

INFINITE 0.0000 1,000000 1.000000 1,000000 0.00 AIR 43._ 0,00

2 SPHERE
3 SPHERE

INFINITE

INFINITE
5.0000 1.415660 1.415660 1.415660 0.00 AIR _5 r" 43.53 0.00
0.0000 1.000000 1.000000 1.000000 0.00 AIR 44.77 0.00

4 SPHERE NORMAL INFINITE 80.7123 1.000000 h000000 1.000000 0.00 AIR 179.34 0.00

5 ASPHERE -162.356B -72,0000 -1.000000 -1.000000 -1.000000 0.00 AIR 176.80 0.00

6 ASPHERE

7 ASPHERE

-B3.4644

-174,21B6

172,0000 1,000000 1.000000 hO00000 0.00 AIR _.19 0,00

-IB6.B951-I.000000-I,000000-hO00000 0.00 AIR 241,47 0.00

8 SPHERE
9 SPHERE

INFINITE

INFINITE

-4.8260 -1.415660 -i.41.5660 -1,415660 0.00 AIR _: F" 45.46
0,0000-I,000000-i,000000-1.00(0)000.00 AIR / 44,03

0.00
0.00

i0 SPHERE INFINITE 0.0000-I.000000-I.000000-I.000000 0,00 AIR 44.03 0.00

NO. TYPE

l I

4 I

X-DEC,

TABLEOF DECE_TRATIONS,TILTSAND ROTATIONS

(Y-TILT) (Z-TILT)

Y-DEC, Z-DEC. IIlETAZ lllEl'AY THETA X
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SURFACETYPE2 ASPHERICCOEFFICIENTS
EPsilon

NO, (CCfl,O) C' D' E' F'

5 6,115486E-01O,O00000E÷O09,347959E-13-4,89B472E-171.180927E-21
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4" /2.ED/_r,./,q__& C05_'_O/F_.e,J;_
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MAGHIF!CAT!ONSEMIANG,FIELDBACKVTX,DIST BARRELLENBTH FRNT,UTX,BISTSEMIANB,FIELI)DEEABNIFICATION

0,000000 B.O00000 INF -6,008792 -6.008792 22.422901 INF
APT,STOPDIAM APT,STOPDIST FROMSRFCE,NO _ZtlllZXZnXt FLD,STOPDIAH FI.D,STOPDIST FROMS_CE._



Figure 3.4

Spot Diagrams for Optimized System
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Figure 3.5

Optimized Prescription with Filter Mirror
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1,3,0,-I
WAUELENGTH

NO, SURFACE TILT DIFFRACT

TYPE TYPE TYPE

0 EHTRANCE
PUPIL

i SPHERE

RADIUS

INFINITE

0,213B60 0.213860 0,213860 PHI 0,00_00E+00

THICKNESSMD-IHI)EXHI-IHDEXLO-INDEX ABBE GLASS CLaiR OUT{R
NO, NAME AP_T BOUHO

85.5975 -1,000000 -1,000000 -1.000000

-50,0000 -1,000000 -1.000000 -1.000000 0.00 AIR 54,95 0,00

2 SPHERE RESTORE INFINITE 0,0000 1.000000 1,000000 1.000000 0.00 AIR 65,11 0,00

3 SPHERE NORMAL INFIHITE 35,5975 1,000000 1,000000 1,000000 0,00 _IR 47,96 0.00

4 SPHEREN_HAL INFIHITE 0,0000 t,O00000 1,000000 t,O00000 0.00 AIR 43,53 0.00
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4. Development of the Error Budget

The proper criterion for evaluating optical performance depends on a number of

different factors: the nature of the source to be imaged, limitations of the optical

system, the type of detector, and the goal of the application. Figure 4.1 shows the

relationships between various commonly used image quality criteria.

Since this telescope is dominated by geometric abberation as shown in the spot

diagrams (the on-axis rms spot radius is --54 times larger than the diffraction-limited

performance of an f/2.88 system at 1200 _), error budgeting in terms of wavefront

error would not provide a practical figure of merit. Because spatial and temporal

intensity variations in the scene are of primary interest to the instrument scientists,

encircled energy and rms spot size, which are calculated from the point spread

function, were chosen to provide a convenient means of assessing telescope

performance.

An optical transfer function (OTF) budget (or equivalent) might well be

considered appropriate for this system given the desire to spatially resolve aurora

features. OTF, however, can in turn be translated via a Fourier transform into a

point spread function from which the original image quality criteria were

calculated.

Since no specific optical performance requirements were handed down to

Hughes DOS by MSFC or the University of Alabama, the approach of "best effort"

was taken giving the constraints of manufacturing and assembly tolerances,

environmental contributors, and budget and schedule. Traditionally, a degradation

of 15%-20% in the optical performance of a telescope due to environmental

influences, and fabrication and assembly errors has been tolerated. With is in mind,

a target of 60% encircled energy in a 27 _m radius circle, corresponding to the half-
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width of the long side of UVI's CCD pixels, was established. This requirement is

contingent on a reasonable set of manufacturing and assembly tolerances for both

the optics and the assembly of the telescope, i.e. the use of ultra-high precision (sub°

micron) alignment techniques would not be used.



5. UVI Error Budget

Since cost is a major program consideration and given the speed of the parent

optics, it was decided that the optics should be diamond-turned using nickel-coated

aluminum substrates and subsequently post-polished. This provides one with very

smooth (typically 10-12/_ rms) surfaces and allows one to put high-order aspheric

surfaces on the substrate. Based on input from the optical designers, it was

determined that the optical surface should be < 0.5 waves rms (_. = 6328 _) for each

optic. This amount of surface figure error would not noticeably affect encircled

energy or rms spot size (i.e. < 1%) and is comfortably achieved with current

diamond-turning practices.

The principle contributor to optical performance degradation for this optical

system is the large bulk temperature change associated with the transition from

ground to orbit. Based on MSFC's initial estimate of the on-orbit thermal

environment, the nominal on-orbit bulk environment was specified to be 0 °C (32

°F) with allowable orbit-to-orbit bulk temperature variations of +5.5 °C (+10 °F)

while the instrument was operating. Bulk temperature changes contribute to

relative despace and decenter misalignments, as well as changes to the radius of

curvatures of the three mirrors. Temperature gradients through the optical bench

in each of the axes were estimated to be _+0.1 °C/cm (+0.5 °F/in.). These gradients

were assumed to be superimposed over the bulk average, thereby contributing only

to changes in the mirror radius of curvatures and relative tilts between the optics.

Because UVI is compromised in terms of on-axis performance so that

performance variations across the large FOV could be minimized, a simple error

sensitivity analysis could not be performed. As a result, once error allocations were

determined, each misalignment case had to be run through MEXP separately to

determine its impact on performance.



Appendix A details the calculations made to determine misalignment errors due

to the various contributors. Calculated values are based on the current design

dimensions as shown in detail piece part and assembly level drawings. Total

misalignment (shown as total allowable error) due to environment and

manufacturing errors plus margin were run and the impact on on-axis encircled

energy and rms spot size were calculated. These values are illustrated in the

following error budget (Figure 5.1) and the top level number is the rss of the

contributors. This in turn is related back to encircled energy to determine margin.

Note that misalignment terms were calculated with respect to the secondary

mirror rather than the focal plane. This results from the physical location of the SM

in the telescope and the approach taken in assembling and aligning the optics.

During assembly and alignment both the primary and tertiary mirrors are to be

aligned to the secondary mirror.
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6. Conclusions

As is seen in the error budget, the target of 60% encircled energy in a 27 _m

radius is meet with some margin. This 4% margin, together with the margin

initially allocated to each error contributor, helps ensure that any subsequent

changes in the thermal environment or drastic changes in assembly philosophy or

procedures will not require a relaxation of the target budget requirement.

During recent conversations with MSFC, preliminary indications were provided

that the thermal environment would be significantly less severe in terms of ground-

to-orbit bulk temperature changes. This information will be folded back into the

error budget when available.
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APPENDIX A

UVI Error Budget Calculation Details

A-1



Primary Mirror w.r.t. Secondary Mirror Despace Contributors

Al(in.) = Oc(in./in/°F) l(in.) AT(°F)

Bulk Temperature Change - Ground to Orbit

Length
SM Body to Flange 0.449

Flang to Housing Shim 0.05
Housing 3.182

PM Flang to Housing Shim 0.05
PM Body to Flange 0.25

AT = -36 OF (-20 °C)

Material CTE(in/in/°F) A (in.)
A1 6061-T651 1.36E-05 2.20E-04

AISI 410 5.50E-06 -9.90E-06
AI 6061-T651 1.36E-05 -1.56E-03

AISI 410 5.50E-06 -9.90E-06
AI 6061-T651 1.36E-05 1.22E-04

AI = - 0.00124 in.

(- 0.032 mm)

Bulk Temperature Change - Orbit to Orbit AT = +10 °F (+_5.5°C)

Length
SM Body to Flange 0.4488

Flang to Housing Shim 0.0500
Housing 3.1804

PM Flang to Housing Shim 0.0500

PM Body to Flange 0.2499

Material
AI 6061-T651

AISI 410
AI 6061-T651

AISI 410

AI 6061-T651

CTE(in/in/°F)
1.36E-05
5.50E-06
1.36E-05
5.50E-06
1.36E-05

Al =

+,_ (in.)
6.10E-05

-2.75E-06
-4.33E-04
-2.75E-06

3.40E-05

+ 0.00034 in.

(+ 0.009 ram)

Manufacturing and Assembly Errors

Measurement of Optical Surfaces to Reference Surfaces :

Measurement of Spacing between Optics:

Total Errors:

_+0.00014 in. (includes both PM and SM)

:L-0.0005 in.

_+0.00052 in. (_+0.0132 ram)

A conservative total Primary Mirror w.r.t Secondary Mirror Despace Error is given by the rss of these

values:

E = + 0.0014 in. (+ 0.035 mm)

Total Allowable: Ct = + 0.002 in. (_+0.050 mm) Margin: Cm = + 0.0014 in. (_+0.035 mm)
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Tertiary Mirror w.r.t. Secondary Mirror Despace Contributors

Al(in.) = CZ(in./in/OF) l(in.) AT(°F)

Bulk Temperature Change - Ground to Orbit

Length
SM Body to Flange 0.449

Flang to Housing Shim 0.05
Housing 7.521

TM Flang to Housing Shim 0.05

TM Body to Flange 0.25

AT = -36 OF (-20 °C)

Material
AI 6061-T651

AISI 410
AI 6061-T651

AISI 410
Ai 6061-T651

CTE(in/in/°F)
1.36E-05
5.50E-06
1.36E-05

5.50E-06
1.36E-05

a (in.)
2.20E-04

-9.90E-06
-3.68E-03
-9.90E-06

1.22E-04

M = - 0.0034 in.

(- 0.085 mm)

Bulk Temperature Change - Orbit to Orbit aT = +10 °F (+_5.5 °C)

Length
SM Body to Flange 0.4488

Flang to Housing Shim 0.0500
Housing 7.5173

TM Flang to Housing Shim 0.0500

TM Body to Flange 0.2499

Material
AI 6061-T651

AISI 410

A1 6061-T651
AISI 410

AI 6061-T651

CTE(in/in/°F)
1.36E-05
5.50E-06
1.36E-05
5.50E-06

1.36E-05

:ta (in.)
6.10E-05
-2.75E-06
-1.02E-03

-2.75E-06
3.40E-05

Manufacturing and Assembly Errors

_+0.00093 in.

(_+0.024 mm)

Measurement of Optical Surfaces to Reference Surfaces :

Measurement of Spacing between Optics:

Total Errors:

_+0.00014 in.

_+0.0005 in.

_+0.00052 in.

(includes both PM and SM)

(_+0.0132 mm)

A conservative total Tertiary Mirror w.r.t Secondary Mirror Despace Error is given by the rss of these

values:

E = + 0.0035 in. (+ 0.091 mm)

Total Allowable: Ct =-+ 0.0047 in. (_+0.120 mm) Margin: I_m = + 0.0029 in. (_+0.073 mm)
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FoCal Plane w.r.t. Secondary Mirror Despace Contributors

Al(in.) = (X(in./in/°F) l(in.) AT(°F)

Bulk Temperature Change - Ground to Orbit AT = -36 OF (-20 °C)

Length Material
SM Body to Flange 0A49 AI 6061-T651

Flang to Housing Shim 0.05 AISI 410
Housing (to pin) 0.165 Ai 6061-T651

Top Plate to Det. Plate 1.28 AI 6061-T651
Pin C/L to Det. Pad 0.97 Al 6061-T651

Det. Shim 0.1 AISI 410
Det. Foot to FP 1.31 Al 6061-T651

CTE{in/in/OF)
1.36E-05
5.50E-06

1.36E-05
1.36E-05
1.36E-05
5.50E-06
1.36E-05

AI=

A (in.)
2.20E-04
-9.90E-06
-8.08E-05
-6.27E-04
-4.75E-04

-1.98E-05
6.41E-04

+ 0.0004 in.

(+ 0.010 mm)

Bulk Temperature Change - Orbit to Orbit AT = +10 °F (+_5,5°C)

SM Body to Flange
Flang to Housing Shim

Housing (to pin)
Top Plate to Det. Plate

Pin C/L to Det. Pad
Det. Shim

Det. Foot to FP

Lengths Material CTE(in/in/°F) +A (in.)
0.4488 AI 6061-T651 1.36E-05 1.22E-05
0.0500 AISI 410 5.50E-06 5.50E-07
0.1649 Al 6061-T651 1.36E-05 4.49E-06
1.2794 Al 6061-T651 1.36E-05 3.48E-05
0.9695 A! 6061-T651 1.36E-05 2.64E-05
0.1000 AISI 410 5.50E-06 1.10E-06

1.3094 A! 6061-T651 1.36E-05 3.56E-05

AI= +0.0001 in.

(+ 0.13025 ram)

Manufacturing and Assembly Errors (estimated)

Assembly of Detector Assembly: _+0.001 in.

Total Errors: _+0.001 in. (_+0.0254 mm)

A conservative totalFocal Plane w.r.t Secondary Mirror Despace Error is given by the rss of these

values:

E = + 0.0011 in. (+ 0.028 mm)

Total Allowable: Ct = + 0.0012 in. (_+0.031 ram) Margin: Cm = + 0.0005 in. (_+0.013 mm)

This is only an estimate, since it will be dictated by MSFC tolerances and assembly procedures.
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Primary Mirror w.r.t Secondary Mirror Decenter Contributors

Al(in.) = O_(in./in/°F) l(in.) AT(°F)

Bulk Temperature Change - Ground to Orbit

SM to PM Decenter(Y-axis)
SM to PM Decenter (Z-axis)

AT = -36 *F (-20 *C)

Length Material CTE(in/in/°F)
2.165 AI 6061-T651 1.36E-05

a (in.)
-1.06E-03

0.0

Bulk Temperature Change - Orbit to Orbit

SM to PM Decenter (Y-axis)

SM to PM Decenter (Z-axis)

AT = __+10OF (.+53 °C)

Length Material CTE(in/in/°F) +_A (in.)
2.1639 AI 6061-T651 1.36E-05 5.89E-05

0.0

Manufacturing and Assembly Errors

Measurement of Vertex to Reference Surfaces (Y-Axis): _+0.00014 in. (includes both PM and SM)

Measurement of Vertex to Reference Surfaces (Z-Axis): _+0.00014 in. (includes both PM and SM)

Measurement of Spacing between Optics (Y-Axis): _+0.0005 in.

Measurement of Spacing between Optics (Z-Axis) _+0.0005 in.

Total Errors: _+0.0007 in. (_+0.0132 ram)

A conservative estimate of the total Primary Mirror w.r.t. Secondary Mirror Decenter error is given by

the rss of the above values:

= +_0.0013 (in.) (+ 0.032 mm)

Total Allowable: Et = + 0.0015 in. (_+0.038 mm) Margin: Em= +-0.0007 in. (_+0.019 ram)
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Tertiary Mirror w.r.t Secondary Mirror Decenter Contributors

Al(in.) = o_(in./in/°F) l(in.) AT(°F)

Bulk Temperature Change - Ground to Orbit AT = -36 °F (-20 °C)

SM to TM Decenter (Y-Axis)
SM to TM Decenter (Z-Axis)

Length Material CTE(in/in/°F)
3.161 AI 6061-T651 1.36E-05

a (in.)
-1.55E-03

0.0

Bulk Temperature Change - Orbit to Orbit AT = +10 °F (.'J:5.5°C)

SM to TM Decenter(Y-Axis)
SM to TM Decenter (Z-Axis)

Length Material CTE(in/in/°F) +A (in.)
3.1595 AI 6061-T651 1.36E-05 8.59E-05

0.0

Manufacturing and Assembly Errors

Measurement of Vertex to Reference Surfaces (Y-Axis): _+0.00014 in. (includes both PM and SM)

Measurement of Vertex to Reference Surfaces (Z-Axis): _+0.00014 in. (includes both PM and SM)

Measurement of Spacing between Optics (Y-Axis): :1.-0.0005in.

Measurement of Spacing between Optics (Z-Axis) :L-0.0005 in.

Total Errors: _+0.0007 in. (_+0.0132 mm)

A conservative estimate of the total Tertiary Mirror w.r.t. Secondary Mirror Decenter error for all axes

is given by the rss of the above values:

E = _+0.0017 (in.) (_+0.043 mm)

Total Allowable: Et = + 0.002 in. (_+0.038 mm) Margin: Em= -+0.001 in. (_+0.026 mm)
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Mirror A Radius of Curvature Contributors

AR (in.) -- (Z(in./in/°F) R(in.) ATbulk(°F)

AR (in.) = Ct(in./in/°F) R2(in. 2) (Tfront - Tback)(°F)/Thickness(in.)

Bulk Temperature Change - Ground to Orbit &T = -36 °F (-20 °C)

Primary Mirror Radius
Secondary Mirror Radius

Tertiary Mirror Radius

R (in.) Material CTE(in/in/OF) &R (in.)
639200 AI 6061-T651 1.36E-O5 -3.13E-03
3.28600 AI 6061-T651 1.36E-05 -1.61E-03

6.85900 AI 6061-T651 1.36E-05 -3.36E-03

Bulk Temperature Change - Orbit to orbit

R (in.)

Primary Mirror Radius 6.3889
Secondary Mirror Radius 3.2844

Tertiary Mirror Radius 6.8556

AT = +10 OF (::t55 °C)

Material CTE(in/in/°F) _+aR (in.)
AI 6061-T651 1.36E-05 :tl.74E-04
A1 6061-T65I 1.36E-05 +8.93E-05
A1 6061-T651 1.36E-O5 +1.86E-04

Axial Temperature Gradient (along optical axis) - On-Orbit aT/in. = _+0.5 °F/in. (_+0.1 °C/an)

R (in.)

Primary Mirror Radius 6.3889

Secondary Mirror Radius 3.2844
Tertiary Mirror Radius 6.8556

Ave. Thick. (in.) CTE(in/in/°F) + AR (in.)
0.8250 1.36E-05 +_2.78E-04
0.3745 1.36E-05 +7.34E-05

1.2650 1.36E-05 +3.20E-04

Radial Temperature Gradients effects are to small to account for.

A conservative total delta radius of curvature for each mirror is given by the rss of these values:

Primary Mirror Radius
Secondary Mirror Radius

Tertiary Mirror Radius

+ &R (in.) _+&R (ram) Total Allow. (ram)
_+0.0031 _+0.079 +0.81
_+0.0016 _+0.041 +0.42

_+0.0034 -+0.086 _+0.88
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Primary Mirror w.r.t Secondary Mirror Tilt Contributors

Thermal gradients in the Y and Z axes will contribute to a relative tilt as well as alignment errors, a

gradient along the optical axis will not contribute. It is assumed that a 0.5 °F/in through the optical

bench in each of these axes is present. Note that the numbers attributed to thermal misalignment is

very conservative given the hardware configuration.

PM to SM Tilt (Y-axis): 3 arc-sec

PM to SM Tilt (Z-axis): 2 arc-sec

rss Total: 3.5 arc-sec

Manufacturing and Assembly Errors

Measurement of relative tilt in 2-axes: 30 arc-sec

Total: 30.2 arc-sec

Total Allowable: 108 arc-sec (1.8 arc-min)

This conservative total allowable was allocated prior to details of assembly and hardware.
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Tertiary Mirror w.r.t. Secondary Mirror Tilt Contributors

Thermal gradients in the Y and Z axes will contribute to a relative tilt as well as alignment errors, a

gradient along the optical axis will not contribute. It is assumed that a 0.5 °F/in through the optical

bench in each of these axes is present. Note that the numbers attributed to thermal misalignment is

very conservative given the hardware configuration.

TM to SM Tilt (Y-axis): 12 arc-sec

TM to SM Tilt (Z-axis): 15 arc-sec

rss Total: 20 arc-sec

Manufacturing and Assembly Errors

Measurement of relative tilt in 2-axes: 20 arc-sec

Total: 28 arc-sec

Total Allowable: 60 arc-sec (1 arc-min)

This conservative total allowable was allocated prior to details of assembly and hardware.
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Focal Plane w.r.t. Secondary Mirror Tilt Contributors

This contributor again is driven by MSFC assembly procedures. It is estimated that alignment can be

done as well as the mirrors.
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Primary Mirror w.r.t. Secondary Mirror Rotation Contributors

This error contributor is driven by how well one can measure height variations of the precision

alignment surface on the flanges of each surface and subsequently determining the angular tilt of the

alignment surface.

PM Alignment Surface Length: =1.4 in. (35.56 mm)

Height Measurement Sensitivity: 0.0002 in. (0.0025 mm)

Angular Resolution: 30 arc-sec

Total Allowable: 2 arc-min
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Tertiary Mirror w.r.t. Secondary Mirror Rotation Contributors

This error contributor is driven by how well one can measure height variations of the precision

alignment surface on the flanges of each surface and subsequently determining the angular tilt of the

alignment surface.

TM Alignment Surface Length: =2.3 in. (58.4 mm)

Height Measurement Sensitivity: 0.0002 in. (0.0025 mm)

Angular Resolution: 18 arc-sec

Total Allowable: 2 arc-min
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ULTRAVIOLET IMAGER INVESTIGATION/POLAR

PRELIMINARY DESIGN REVIEW

MSFC Building 4481/Room 369

OCTOBER 17, 1989

PRELIMINARY AGENDA

8:30am INTRODUCTION

introductions

agenda/objectives
instrument overview

M. TORR

9:30am MECHANICAL DESIGN

optical bench, mechanisms,

housing, s/c interface,radiator,
electronics stack housing

(45 min) L.WALKER

mass/c.g, status L. WALKER

ICD summary (10min) J. SPANN

10:25am BREAK

10:40am THERMAL DESIGN

camera, radiator,

electronics stack,
reduced thermal model

(30 min) L. WALKER

ICD summary (20 min) J. SPANN

11:30am MISC. ICD SECTIONS

magnetic interface
electrostatic cleanliness

environmental interface

(30min)

J. SPANN

12:00noon LUNCH



1:1 5pm ELECTRONICSDESIGN

system, processor, memory,
detector, detector interface,
s/c interface, TLM format,
housekeeping,
mechanism control,power
supplies,health and safety
data (60min) L. SAVAGE

power status L.SAVAGE

NSPARS L. SAVAGE

ICD summary (30min) J. SPANN

2:45pm

3:00pm

3:15pm

4:30pm

DEVELOPMENTSTATUS AND
SCHEDULES (15min)

BREAK

SOF-rWARE/DATA MANAGEMENT
flight software (15min)

GSE software (15min)

Data Management Plan
(15 rain)

data analysis software
(30min)

ISSUES,CONCERNS
ACTION ITEMS

M.TORR

L. SAVAGE

L.SAVAGE

G.GERMANY

D. TORR

5:00 pm AJOURN
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AGREED TO RESOURCES SUMMARY

MASS

POWER

DATARATE

19.5 KGMS

20 WATTS

12 KBPS

PDR/RESOURCES
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ULTRAVIOLET IMAGER

ISTP-POLAR

ALL DIMENSIONS IN MM

SEE FIG. 9-6
FOR HOLE PATTERN

184
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FIGURE 9-4- - DETAIL "B" - ELECTRONICS STACK
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HIGHLIGHTSOF THE ULTRAVIOLET
IMAGER INVESTIGATION

OPTICS

#ast (#/3) s_eVrem uiSh wide #ield of view (B degrees)
and excellen'I"imagequali'I'_(( I pixeIover _sff o# iage),
state-of-,he-art low scatter des_n

DETECTORS

;moven ir_ensifL-,_l-C_m_em tha$ pro_e_ co_ect E--D
_en_r with Io_ noi_e and lar_je d_j_Jc ran_ (4_]_ Inefmtmneo_
selectable o_r a range of six to seuen orders o# _jnitude)

DICTA SYSTEM

on-board micro_ocessor (B8C86) controllerand data _orma1-ter
allows programa_le operations and sob_acd'_l PeaHtme data
co_prenion ,hat is Tur,her enha_ed b_jda,a comprusion
a_oritl_

FILTERS

narrow harness fitter_ with excellent out o# band rp_.k_ction
for k_ is_on_ (e.g. 1_, tB_ allou_ fine first trul_
qu_xtftafiueauroral imaQm9

CRLIBRRTION FRCILITIES

e_istin9 uacuu_ ultraviolet calibration #aoqities ailc_ absolute
calibration _ ima_er_ all _vele¢,g,h_

RTNOSPHERIC/RURORRL HODELS

mcx_ml¢o# 1the upper atmo_erm _ w_e_i11c part"_:li i_act
on the atmosphere developed b_lour gr'o_pover _he las'_
2e _eams are essential,o ,he interrelationof the auroral
in#o_tion co_ent

UVIBIB6

ORIGINAL PAGE IS
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08:02 PM 16-Oct-',_ 9
i TEM NAME

PRIMARY DETECTOR

SECONDARY DETECTOR

MIRROR MECH. ASSY

CABLE HARNESSES

FILTER WHEEL ASSY

BAFFLE DOOR ASSY

BASEPLATE ASSY

CAMERA COVER ASSY

OPTICAL BENCH ASSY

THERMAL LINKS

COLDPLATE ASSY

INo,,_M__, TOTAL

MASS

(KG)

1 I'I

iii

0 572
1 706
1 075

0 610

1 797

0 642
4 95O

0 200

1 030

14. 803

XCG

(MM)

167.64
114.3

287.02
].0!.6

325.12
266.7
266.7
266.7

213.36
f27

139.7

205 . _.'_6

YCG

(MM)

284.48
215.9

223.52
.J17.5
'-_ 9 .

279. 4

228. 6

228. i3

24S.84

241..%

190.5

246.60

144.78

!44.78

76.2

!OI.C

144 _o• I LJ

i27

7.62

!44.73

195.58

292.1

i 3i. 0 4

CAMERA XASS A['C)CG

ITEM NAME

PRIMARY DETECTOR

MIRROR MECH. ASSY.

CABLE H_ZNESSES

FILTER :WHEEL .....I

RFILTER/APER ASSY
BASEPLATE ASSY

CAMERA COVER ASSY

OPTICAL BENCH ASSY

THERMAL LINKS

COLDPLATE ASSY

INSTRUMENT TOTAL

MASS

(LB)

2.450

2 450

1 260

760.J

370
1 245
3 960
1 415

i0 910

0.44

2.270

32.630

XCG

IN)

6.6

4.5

11.3

4

i2.3

i0.5

10.5

10.5

8.4

5

5.5

8 0814

V f..., {.._

(IN)

11.2

8.5

8.8

12.5

:)
ii
9

9

9.6

9.5

7.5

9.7086

ZCG

IN)

5.7
5.7

,.1

4
5.7

5
0.3

6
5,7
7.7

11.5

5 1591
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iSTP-UVI ELECTRON_ _ _^cc_o AND
08:13 PM 16-Oct-89

ITEM NAME

CPU/SCIF A&B

MEMORIES A&B

DETECTOR [/F A&B

HOUSEKEEPING BOARD
TEU ,_,-_mr'_,J_..'_ BOARD
DUAL _'_""°,.. .... ,.,_ CONTROLLE

m,_,_MO_H__CARD ASSY
POWER _UPPLIES AAB

CRATE STACK

STACK ENDPLATES

-_±_ RODS

FASTENER ALLOWANCE

INo_,_UMEJT TOTAL

CG

MASS

(KG)

0 .t22
0 462

0 422
0 !85
0 185
0 256
0 198
0 _=6_o

1 234
0 596
0 !49
0 054

4.718

XCG

(MM)

139.7

i33.25

142.24

i39.7
139.7

142.'24

41.275

_2 v

121.92

!27

127

127

113.5604

YCG

(MM)

88.9
88.9
88.9

21.59
147 °_
170.13

_8 9

SS 9

88 9

88 9

88 9

g8 9

_

ZCG

(MM)

I01 6

I01 6

I01 6

101 6
i01 6

i01 6

I0! g

i01 6

I01 6

i01 6

I01 6

i01 6

101.6

ISTP-UVI ' ' _'_' MASS ANDELEC_,-_Ch rpc

ITEM NAM_

CPU/SCIF A&B

MEMORIES A&B

DETECTOR !/F A&B
HOUSEKEEPING BOARD

TEU CONTROL BOARD

DUAL MOTOR CONTROLLE

MOTHERBOARD ASSY

POWER SUPPLIES A&B

CRATE STACK

STACK ENDPLATES

TENSION RODS

FASTENER ALLOWANCE

INSTRUMENT TOTAL

CG

MASS

(LB)

0.930
t 0!8

0 930
0 407
0 407
0 564
0 436
1 225
o 720

1 314
0 329
0 !20

10.401

XCG

(IN)

5.5
5.25

5.6
5.5
5.5
5.S

1.625
0.5
4.g

5
5
5

4.470883

YCG

(IN)

3.5
3.5
3,5

0.8 5
5 8
6 7

5,.j

3 5
3 5

5..J

3 5
3 5

3.659760

ZCG

(IN)

4
4
4
4
4
4
4
4
4
4
4
4
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UVI ICD MECHANICAL SECTION

STATUS :

Signed by GE and UVI

COMMENTS :

Instrument Mass
Total mass does not include

MLI blankets and intra-
instrument harness

Instrument Frequency

Primary resonance
frequency for both boxes

expected to be >i00 Hz

Values for CG are available



UVI ICD THERMAL SECTION

STATUS :

Inputs provided to GE

COMMENTS :

GE providing MLI blankets

CONCERNS :

Camera Operating Temperature
ICD does not reflect current

IIRD temperature ranges

Thermal Backload Analysis
Values of heat load on
instrument surfaces are

preliminary

Heat Flow Limits
Values for heat flow limits

based on current operating

temperatures and mounting
surface contact area are not

provided



3.3 Thermal Interface Reauirements

3.3.1 General. The interface conditions specified in this section are

intended to maintain each UVI item within the temperature range shown in

Table 3.3-1 when its internal heat dissipation is within the range indicated. The

Camera and electronics stack are isolated form the despun platform and the space

environment with thermal isolators and thermal blankets except portions of the +Z

facing surfaces are covered with selected coatings to radiate internal dissipation to

space.

Item

Camera

Camera (Radiator)

Digital Elect Box

Digital Elect (Radiator)

NOTE:

1)

2)

3)

Table 3.3-1

Operating
Tmin/Tmax,C

Lq, rI Thermal Characteristics

Non-Operate

Omirgq)max,w Tmin/Tmax,¢ Qmin/Qmax,w

-20/+20 0/0 -20/+40 0/0

-20/0 10.0fl 0.0 -20/+40 0/0

-20/+40 0/0 -20/+40 0/0

-20/0 10.07! 0.0 -20/+40 0/0

Cold plate temperature should be +/- 1 °C when operating, load dissipated by ra-

diator is a function of temperature. See Figure 10.

Camera box dissipation is assumed to be dissipated entirely through radiator.

Electronics box dissipation is assumed to be dissipated entirely through radiator.

Unless otherwise noted, all interface conditions specified in this section

are to be interpreted as orbit-average and spatial-average values.

Size Coae dent No.

A 49671
!

IS-3282161

:Sheet _3



Thermal interfaces are specified in terms of parameters depicted schematically

in Appendix 1. These parameters define temperature, heat flow, and coupling
limits which should result in adequate thermal balance for all instrument

units. Appendix 1 explains the derivation and use of the thermal backload parame-
ter for external surfaces.

3.3.2 Laboratory_ Exterior.

3.3.2.1 Externally Mounted Instruments. The UVI instrument is mounted on the

despun platform of the POLAR laboratory and is classified as an externally
mounted instrument. The following paragraphs specify the thermal interface
for this unit.

3.3.2.2 Instrument Exterior Thermal Environment. Radiation couplings and

thermal backloads for the exterior surfaces of UVI sensor are specified in
Table 3.3-2. These values are based on the surface finishes defined in

paragraph 3.3.2.3.

3.3.2.3 Instrument Thermal Surface Finishes. Finishes and thermal

properties of the exterior surfaces of the UVI sensor are specified in
Table 3.3-3.

3.3.2.4 Conductive Coupling. The UVI Camera is mounted to but is thermally iso-
lated from the despun platform. The UVI Electronics box is mounted to but is ther-

mally isolated from the despun platform with GE-Astro supplied thermal isolators.
Physical constraints on this interface shall apply as written in paragraph 3.3.3.4.2

of the GIIS. Table 3.3-4a specifies the nominal mounting area, conductance, and

limits of despun platform temperature at this interface. Limits of heat flow by
conductive interchange across this interface are specified in Table 3.3-4b.

si. ! :od .d o..o I
A 49671 IS-3282161
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Item

Camera

E-Box

Table 3.3-3

Surface

Sides

+Z face (top)
-Z face

Sides

+Z face (top)
-Z face

UVI Exterior Surface Definition (TBR)

Area IR UV Alpha
22a_ E_s BOM EOM

TBD (Black body) TBD TBD TBD

TBD (Black body) TBD TBD TBD

TBD (Black body) TBD TBD TBD

TBD (Black body) TBD TBD TBD
TBD (Black body) TBD TBD TBD

TBD (Black body) TBD TBD TBD

Unit

Camera

E Box

Notes:

Table 3.3-4a UVI Exterior Mounting Thermal Interface, Tif (TBR)

Contact Conduct- Temperature (Min/Max),C

Filler Area,sq,in ance,w/C Operating Non-OQerate

Isolators 5 x 0.75 0.36 -20/30 -30/40

Isolators 6 x 0.25 0.12 -20/30 -30/40

1) Temperatures shown are on the spacecraft side of the interface.

Table 3.3-4b

Unit

Camera

Digital Box

Notes:

1)

UVI Exterior Mounting Conductive Limits (TBR)

Heat Flow Limits, Qif (Note 2), w

Operating Non-operate
Item Cold Hot Cold Hot

Isolated mount -3/+3 -3/+3 -4/+4

Isolated mount -2/+2 -2/+2 -3/+3

Heat flow is defined as positive INTO the instrument.

-4/+4

-3/+3

2) Cold and hot refer to laboratory conditions defined in Table 3.3-4a.

The range shown for each case assumes the instrument unit at its

coldest/hottest allowable temperature.

3.3.3 Laboratory_ Interior. N/A

I Size I Code icJent No

A 49671
I
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Table 3.3-2 UVI Exterior Surface Thermal Environment (TBR)
PRELIMINARY

Thermal Backload, Qbl (Min/Max),w

hem
Rad Coup, Sun Ang Sun Ang Sun Ang

Surface _ _ _

Camera Sides 36.0 4.0/4.9 9.5/11.5 3.2/4.0

+Z face (top) 36.0 27.0/35.8 0.0/2.0 0.0/1.0

oZ face N/A N/A N/A N/A

E-box Sides 36.0 4.0/4.9 9.5/11.5 3.2/4.0

+Z face (top) 36.0 27.0/35.8 0.0/2.0 0.0/1.0
-Z face N/A N/A N/A N/A

Notes:

1 ) Radiation couplings are defined as surface area times surface emissivity times a
view factor of unity. When used with thermal backload, these values should

couple the surface to a 0 deg K heat sink and no other external couplings should
be used.

2) Thermal backload is the total heat absorbed by the surface from its external

environment. It includes solar, albedo, and earth flux contributions, as well as
IR input from nearby surfaces.

3) The instrument will be operating at sun angles between 90 and 160 deg. It will,

however, be exposed to sun angles between 25 and 160 deg in a non-operate
mode.

4) Coupling has been normalized for a 36 sq. in. surface, actual load is dependant

on box surface area and scales directly with area.

5) Initial values based on e and alpha values of 1.00 (blackbody).

I Size

A
i Code tdent *qo

49671 IS-3282161
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UVI ICD EMC/EMI/ESC SECTIONS

STATUS :

First inputs to GE

COMMENTS :

Aperture Window
Dielectric MgF2
window inside baffle

non-conducting

is

Baffle Surface
Interior baffle

be conducting

surface will

CONCERNS :

Degaussing
Degaussing of instrument must
not affect operation of

permanent magnet stepper
motors

Surface Coatings
Value for minimum

conductivity is not specified



UVI ICD ENVIRONMENTAL SECTION

STATUS :

First inputs to GE

CONCERNS :

Instrument Purge
Nitrogen should be 99.999%
pure with hydrocarbon content
< 2 ppm (boil-off purity)

Transportation and Storage
Temperature limits should
+10/+30 °C

Hydrocarbon content of
surrounding atmosphere
should be < i0 ppm

be

Vibration, Shock and
Acceleration Tests

Design is based on a time
consistant environment



-D

3.4 Maenetic Interface

3.4.1 S_acecraft Generated Maametic Fields. The maximum spacecraft induced

magnetic flux the instrument will experience on the spacecraft will be TBS gauss.

3.4.2 Instrument Generated Mamnetic Fields. Instrument magnetic field

characteristics shall be documented here. (TBS by instruement)

3.4.3 Instrument Degaussing. The instrument, unless noted here, will be

degaussed prior to mounting on the spacecraft. The maximum field strength used

during degaussing will be TBS gauss. The degaussing frequency will be TBS Hz.

3.5 Electromamnetic Interference (EMI)

3.5.1 General. Instruments with electrical devices inherently susceptible to low

level EMI shall indicate special procedures and requirements here.

3.6 Electrostatic Cleanliness (ESC)

3.6.1 General. Bonding and insulation requirements of the instrument(s): TBD

3.6.2 Conductivity and Grounding of Conductive Finishes.

List of instrument coatings: TBS

resistivity:TBS (ohms/meter.)

3.6.3 Bonding of Case Parts. Physical discontinuities (non-conductive) in the
instrument case must be identified here.

Instrument Aperture ESC Design. See Instrument aperture drawing TBD.

E$C of Hinged Mechanisms. Hinged mechanisms must be identified here.

Exposed Connectors and Harnessinm Applies as written the GIIS.

3.6.4

3.6.5

3.6.6

3.7 Environmental Interface.

3.7.1 General Environment. Applies as written the GIIS unless specified here.

3.7.2 Storage. Transportation. and Handling Environment. Applies as written the

GIIS unless specified here.

3.7.2.1 Instrument Environment Before Mounting on Spacecraft:. Applies as

written the GIIS unless specified here.

3.7.2.2 Instrument Stored Mounted on Spacecraft. Applies as written the GIIS

unless specified here.

Size ! Code ,,!,ent No '_

A 49671 IS-3282161
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3.7.2.3 Instrument Transportation while Mounted on Spacecraft. Applies as
written the GIIS unless specified here.

3.7.2.4 Instrument Purina.

Purging requirements:TBD
Connector type: TBD

Purge Interface: See Mechanical Drawing for location.

The instrument team will be notified of interruptions longer than TBD.

3.7.3 Flight Environment. The instrument, while integrated on the satellite, shall

withstand the flight-induced environment detailed in the following paragraphs.

3.7.3.1 Temperature. The instrument shall specify nonoperating survival

temperature range and expected operating temperature ranges here.

NOTE: To ensure that the Qualification Temperature limits are not exceeded

during emergency conditions during spacecraft thermal-vacuum testing, a "Safety

Heater" and a monitoring thermocouple will be attached to the instrument unless
directed otherwise here.

The "Safety Heater" will be approved for thermal-vacuum chamber operation and

will be powered form a +28V supply not connected to the spacecraft power. The

capacity shall be sufficient to maintain the instrument at +10degC when the

chamber walls are at LN2 temperature. Astro will mount the heater to the

instrument when it is put onto the spacecraft. Heater location TBD. See figure
TBD.

3.7.3.2 Thermal-Vacuum. The instrument shall operate within specification over

the temperature range specified here while subjected to a nominal pressure of one

(1) atmosphere or to a vacuum pressure of.75 x 10-5 Tort or lower.

M.in (1 Atm): TBD

Max (lAtin): TBD

Min (Vac): TBD

Max (Vac): TBD

3.7.3.3

3.7.3.3.1

3.7.3.3.2

3.7.3.3.3

3.7.3.4

here.

Vibration, Shock, and Acceleration. Applies as written the GIIS.

Sinusoidal Vibration. Expected test levels: TBD

Shock. Applies as written the GIIS unless specified here.

Acceleration. Applies as written the GIIS unless specified here.

Acoustic/Random Vibration. Applies as written the GIIS unless specified

r
Size i, Code tdent r'!o I
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3.8.4 Instr,unent A ne_ure ESC Desi_m. A continuous conductive surface shall

exist between the solar array substrate, which willbe conductively bonded to the

pr_ structure, and instrument sensors which protrude through solar arr._

apertures (see Paragraph 3.2.6.3).The instrument surface required to interf_ice

with the gasket will be developed jointly by Astro and the Instrumenter.

3.6.5 ESC of H_nged Mechanisms. Hinged mechanisms which do not rotate

through 360 ° shall utilize a conducive strap connected a_-oss the hinge connected

to spacecraf_ ground to preclude charge buildup on the mechanism.

3.6.6 Exposed Connec_r_ and _:_rnCss_ng. All e.x_ernal, exposed electric terminals

shall be rounded and coated with insulating material and, finaily, overcoated with a ....

conduc+Ave material. Such encapsulation shall not preclude the removal,

interchange, additions, and/or repair of any wire/pin connecion. All e.x-ternal

instrument connectors shall have connector covers with a conducting outer surface.

._AI harnessing external to the laboratory surface will he shielded in accordance with

the GGS Electromagne_:c and Magnetic Compatibilit7 Plan, (Astzo TBD) with the

outer surface of the shielding coated with conducive finish per paragraph 3.6.2.

3.7 Environmen_Z Lnte_ec_.

AJ/ins_aznents will be excposed to the environmenta/condiions sped.fled in the

following paragraphs. These env_-on_lents represent condiions which wiil arise

during th e transportation, storage, handling, test,lau_cin and orbit.a/operation of

the instrmzlent when on the spacecra_r%.

3.7.1 General Environment. At the spacecraf_ contractor's facllity,controlled

environments will be provided when necessary as sped__ed in the Ins_ra.ment-

Unique ICD to bring the temperature, humidity, shock and vibration to levels less

severe than those pertaining to launch, ascent, and orbital operations.

3.7.2 Storage, Transportation, and Handling Environment,

3.7.2.1 Instrument Environment Befor_ Mo_ndn_ on Spac_=_._raf_, The

environments experienced by the ins_-ument during fabrication, storage, and all

modes of handling and transportation should be controlled so as to be significantly

less severe than worst-case flight conditions. Storage will be in vendor's shipping

container in a normal factory environment unless the Instrument-Unique ICD

specifies other requirements.

3.7.2.2 Instr,lment Stored ._[oun_ed on $_cecraft

(I) Storage of the instrument when mounted on the spacecraf_ wi1_ be at

Class 100,000 or better, as defined in FED-STI)-209.

During transportation and handling, the laboratory may temporarily be in

areas not meeting class i00,000. During these periods, the spacecra_ will

be in a protective tent. When this tent cannot be used, the instrument
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a 77T 5 70

will be bagged to prevent its being contaminated.

(2) Humidity. L_m_ts of Storage Area: Maximum I-Tumidity 50%. Labo.ratory
may be stored in a tent purged with LN2 boiloff.

(3) Temperature L_m_ts: -10 to +40°C

3.7.2.3 Instmnnent Transvortation while Mounted on Svacecraft, The

environments experienced during spacecraf% transportation and h_ndllng will be

controlled to be significantly less severe than worst-case flight conditions.

3.7.2.4 Instrnrnent Pur__'.n_. If'required, the instrument will be provided-_ nearly .....
continuous dry filtered nitrogen gas purge system, distributed through teflon tubes.

The nitrogen will have a oo-reater than 99.998% purity and less than I ppm of
hydrocarbons. The purge gas flow will be available throughout integration at Astro

and during launch site integrat/on. Purge witl be inten-upted during thermal-vac

testing and durLug some ==round h_ndllng procedures. Instrument teams will be

no_ed of interruptions longer than spe_-:_ed in the instrument-unique ICD.

Purging requirements of the instruments shall be sped.fled in the £nsmuunent-

Unique ICD.

3.7.3 F]i__htEnvironment. 3Jl insrru.men_ integrated on _e sateHke shall be

designed to witJ:mzand the flight-induced environment derailed in the following

paragr- aphs.

3.7.3.1 _ All instruments installed on the spacecrafh shall sped/-y

nonopera6ng surrival temperature range and expected opera6ng temperature

ranges in their respective Instrument-Unique ICD.

NOTE: To ensure that the Qualificat/on Temperature limits are not exceeded
during emerg=ency conditions during spacecra_% thermal-vacuum

testing, a "Safety Heater" and a monitoring thermocouple will be
attached to the instrument unless directed otherwise in the

Instrument Unique ICD.

The "Safety Keater" will be approved for thermal-vacuum chamber operation and

will be powered form a +28V supply not connected to the spacecrai% power. The

capacity shall be suffiient to maintain the instrument at +10°C when the chamber
walls are at LN2 temperature. Astro will mount the heater to the instrument when

it is put onto the spacecraft.

The thermocouple shall be copper-constantan, mounted close to the location of the

instmunent's analog temperature telemetry sensor. The lead_ of this TC shall be

independent of the S/C-instrm:nent harness. Sensor leads ins,tlethe instrument

case shall be properly secured so that only the flyingleads need to be clipped during

pref]Jffhtpreparaions.

3.7.3.2 The_.r___a]-Va__,um. The ins_%r_amentshall operate ,_ spe/fication over

the temperature range specLded in the Instrument Unique ICD while subjected to a

$_ Code iden_ No.49671 3 s o65
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nomina/pressure of one (I) atmosphere or to a vacuum pressure of.75 x I0-5 Ton"

or lower, in addition, the instru_nent shall be capable of operating afher a rate of

pressure change ofi.27 psia/sec. The fullpressure rate of change is shown ip_o

Table 7.

_ion. Shock. and Acceleratbom All ins_ents shall be designed to

</withstand theIvibration, shock, and acceleration environments experienced during

test,launch and orbital operation and shall operate in accordance with the

instmm_ent performance specificaion reqtdrements for those environments.

3.7.3.3.1 @inusoidal Vibration. The sinusoida/vibration qualification levels

experienced by the protofHght spacecra_ in each of three orthogcrnal axes-are listed -.-

in Table 8. The levels e.xperienced by each instrument during these tests shall be

spe___f_edin each Instru/_ent-Un/que ICD.

3.7.3.3.2 Shock. The spacecra_ will ex-pe.-/ence a shock impulse when the separa-

tion band is released during test as well as during separation in orbit. A test of this

event will be pe._ormed on the inte=._u-ated spacecraft. The maximum e.rpected flight

shock levels are shown in Fixate 31.

3.7.3.3.3 Acce!e._at/on. The instzunzents _-vi]l e.x-pe_ence wors_ case e.x-pe_ed steady-

s_ate acce!erauons during launch as delineated in Table 9 for plat'otto and body
mounted _ and POLA_ instrument.

3.7.3.4 ACoust/c,7_andom V_br_t/om The instmunent, while mounted on the

spacecra__, shall be capable of withstanding and shall operate within spec_cation

afar a single exposure of a 1.0 _ duration to the acoustic exitation levels

defined in Figure 32. An acoustic test may also be required ifevaluation indicates

sensitivity to direct acoustic energy,. The instrument shall survive and operate

within specification after e.Tposure to the random vibration levels specified in

Table I0.

3.7.4 Radiat/on Environment. PreIAminary radiation levels for the orbital

environments of the WIND and POLAR laboratories are shown in Figure 33 and

F_gure 34. Instruments located within the laboratory will experience protective

shielding provided by the laboratory outer shell, as indicated by the effective

shielding values in :Figure 33 and Figure 34. Instruments, or portions of

instruments adjacent to openings in the laboratory shell, or otherwise exposed to
the ex_.ernal environment, will receive radiation dosages dependent upon the deg'ree

of exposure and the equivalent thickness of protection provided by the instrument

housing.

3282065
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TABLE 8. SINUSOIDAL VIBRATION CRITERIA PROTOFLIGHT L_LS

FREQUENCY (Hz) ACCELERATION (g's zero-to-peak) • -

Thrust Axis 5 to 6.8

6.8 to 30

30 to 40

40 to 100

Lateral Axis 5 to 6.2

6.2 to 100

Sweep Rate = 4 octJmin.

0.5 in. double amplitude
1.2

1.5 ............

1.0

0.5 in. double amplitude
1.0

PRE'CEDi_G PAGE L_i'_ _,v, fILMED

77_' : "_
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TABLE 9: INSTRUMENT DESIGN LOADS (g's)1.2

Instrument Mounting X Y Z
Location

_P
.°

Despun Platform 3
(or +Z Exterior Sensors)

15.2 14.7 13.

Body Mounted on Equipment 5.9 5.9 13.0
Decks

...° . ..°.° .

1. Referenced to S/C Coordinate System (See Figure 20).

2. Pre]_m{nsry results based on Delta 17[ Inputs and _C Structure Coupling
Effects.

3. Applies to: POLAR - IIVI, VIS, PIXIE, SEPS, DRT
WIND - TGRS, KONUS, 3-D PLASI_L4.

°

S_ I Code Ident No.

PREC.,Fmlr,_PA.'.,_s',.._,r,!_,,,io'rFIL_'_r-.D 49671
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UVI ICD GSE SECTION

STATUS :

First inputs to GE

CONCERNS :

S/C Interface Emulator
Verification of S/C
interface emulator hardware
and software

Synchronization Signals
Data rate signal lacking

Environment

Temperature limits should
20°C to 30°C

Relative humidity limits
should be 40% to 55%

be



4.0 INS' RUIVIZNT GROD_{I) SUPPORT EQUIPMZNT (GSE).

Instrume.ut GSE designed and fabricated primarily for use in tests performe_:at
Astro fa_ties or a test siteshall be capable of:

a) Verifying that the instrument has survived shipment; and

b) Demonstrating successful completion of spacecrafh systems test

requirements.

All Instmmment GSE required to electrically interface with the GGS spacecrat%

checkout station (SCS) shall be provided the interfaces sped.fled in Secion 4.1.

41 Instrument GSE Tnterfaces

The Instmunent GSE test sets shall interface with the laboratory G_E as illustrated

in F_gure 35, and described in the secdons that follow. In genez-a/, the Instrument

GSE shall monitor instrument pe_ormance via laboratory science data supplied in
real time, or as played back from a laboratory GSE tape recorder. InsWument GSE

processing of this data shM1 not require on-Hne suppor¢ from any laboratory GSE
computer. All Ins_-nunent GSE intez-face requirements shall be doc'_nented in the

Insu_-ument-Unique ICD.

4.1.1 Power. The instrument GSE test set shall operate on _/ng]e phase 120 +12/-6

volt ac power supplied at 57 to 63 Hz and shall draw a m2_xim_un of 20 amperes

carrent.

4.:f.2 Instrument Data. The instrument C_<E will be provided both low-rate

engineering and science laboratory dowMink telemetry and high-rate instrument

playback downlink telemetry. The telemetry will be decoded biphase-L or N'B_-L
PCM serial data, at bit rates equivalent to laborator7 down/ink rates. The data

shall be received by the instrument GSE on a differential line driver/receiver

interface per Figure 36.

_ff'_4..l.3 _v_¢hronization Sie-nals. The instrument GEE shall be provided major and

/_- ( minor fi-ame sync pulses and a data bit sync clock for processing the engineering

,_ k and science data of Section 4.1.2. Low-rate data shall be clocked at a bit rate equal
to the real time rate for each laboratory. High-rate instrument playback data shall

be synchronized with a 500 kbps dock. All clock and frame sync signals shall be

received on a differential line driver/receiver interface per Fig_mre 36.

4.1.4 Local Area Network Interface (Optional). A_ the option of the instrument

contractor, a local area network interface, e.g. Ethernet, a/so will be provided to

instrument GSE test sets to a/low the SCS to update its command load database

from the instrument GSE. The protocol for th/s command file retrieval function will

be established at System Requirements Review.
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4.2 Instrv_ment GSE Safety Requirements

Safety engineering principles should be applied in accordance with MIL-S-38"_30.
Particular attention shall be paid to fail-safe provisions in the equipment design to
avoid damage to other laboratory GSE components in the event of catastrophic
failure.

4.3 Instrument GSE Environmental Requirements

The Instrument GSE shall be capable of operation over a temperature range of 55 °
to 95°F and a relative humidity range of 20 to 70%.

4.4 Tns_;rument GSE Complement

The instrument contractor shall supply Astro with a detailed list of the Instrument
GSE to be used at Astro at the Instrument PDR. The list shall include:

(a)
Co)
(c)
(d)

Type of Instrument GSE
Function of Instrument GSE

Power requirements
Approximate size and weight of racks, targets, etc.

5.0 NOTES

5.1Ac__maixm£

In addition to common acronyms, the specialaconyms listedbelow are used
throughout this document.

A/D
ATIV_2
C&DH
CDR
CEI
CDU
COS/MOS
D/A
EMI
FAT
FCC
FSP
GEE
,GSE
GSFC
GTM
PC
PDR
RFEM

R&QAE

Analog to Digital
Ampere-Turn Meter Squared
Command and Data Handling
Critical Deign Review
Contract End Item
Control Distribution Unit

Complementary Symmetry/Metal Oxide Semiconductor
Digital to Analog
Electromagnetic Interference
Flight Acceptance Test
Flat Conductor Cable

Frame Sync Pulse
Government Furnished Equipment Instrument
Ground Support Equipment
Goddard Space Flight Center
GGS Telemetry Module
Power Converter

Preliminary Design Review
Reduced Finite Element Model

Reliability and Quality Assurance Engineering

PRECEDING ;:'AGE BLANK NOT FILMED S_& Code Iden_ No.49671 3 .s .0 5
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',4 RADIATIONHARDENEDDC-DCCONVERTER
HPSGO15SPEC/EIC4TIONS ,,

• g,

PARAMETER

ELECTRICAL L'HARA UTERISTICS
'_DU_ VO,I_C_

'_OnhRuO_S

5t3 ms

CONDITIONS

t _55oc,. 85°CMin

LIMITS AT Tc_,_ =

Max Typ
- 25"C

M_n

:5 28

I_Jblt Input (INHJ

V,L

I_L V,t = 0V. Vm = + 32V

V, t = 0V Vin = * 50V

S',a"_oo,' mDa t Cutter.: _ . - _,, ' 15

OUtpul Voltage

+5V Min Io Max Ioa_ 4.50 550 4 50 50

_-15V Vm = -. 18Vlo32V t20 170 120 150

_:Dut;',2we" = - _SV tO 32;

-5. _5 "50 "_

:'5_ C 75 - 5 C'-_

Bulll-irl-'Tesl OUlDUl { BIT)

Vo_ la_ = 1 5mA

io,, v:. = 25V

L _:_,.,: • c :ace _'DD e
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: " 5.... 28V Ma._ oac '50
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, "]"aarS_; c_- o ._c.
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Specifically devetoDea for n_gn reiia_dity sl:ace fiigm applications: Scnaeffer Mcgnetics Rotary

incremental Actuators employ a small angie cermanem magnet steD!_er motor to airectly drive an

integral harmonic drive speed reducer.

OUTPUT STEPANGLE:

STEPS / REVCLUTICN:

HARMONIC DRIVE RATiC:

DRIVE M©TC, R:

_CWER:._:

OUTPUT ....L,,- rABtLIT/:
INERTIAL..D
FRICTIONAL.

'' I _J ', ,C,_,NG TC.RQUE:."_)

-C._!C N2-:. iTi:=NEiZ
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UVI ICD ELECTRICAL SECTION

STATUS :

First inputs to GE

COMMENTS :

Cable Shielding
Clarification of shielding
in Electronics Stack for

Camera S/C interface signals

Command Timming
On which edge of clock
command clocked in?

is

Major Frame Telemetry Format
Clarification of S/C

housekeeping and instrument

housekeeping formats

Power Supply Frequency
125 KHz

Time Code in Command Data

Required every i0 min



UVI ICD ELECTRICAL SECTION

CONCERNS :

Major Frame Telemetry Format
Contigious word enable in
instrument houskeeping

telemetry



s/c

UVI S/C INTERFACE

+28 Volt (regulated) .... >

+28 Volt (pulse) ...... >

UVI

Command Enable ....... >

Command Clock ........ >

Command Data --->

Telemetry Clock ....... >

Telemetry Enable >

Major Frame Sync >

Minor Frame Sync >

Telemetry Data

Platform Status >

<--- Camera Radiator Temp

<-- Elec Stack Radiator Temp ---

< ...... 0 ° Aperture Temp

< ...... 90 ° Aperture Temp

<..... 180 ° Aperture Temp

<..... 270 ° Aperture Temp

< .... Aperture Door Status

<-- Filter Wheel Home Status ---

Note: Interface is redundant



All of the above grounds will be returned as twisted pairs with their power lines

through separate leads (in the spacecraft harness) to a single ground tie-point

herein after referred to as "laboratory" or "star" ground. All command, data,:a:nd

telemetry voltage levels shall be referenced to "laboratory" ground. For commiand

and data signals, the ground level offset from instrument to spacecraft "star"

ground shall be assumed to be 0.1 volt maximum (0.04 V typical). See Figure 6 for

the GGS grounding philosophy. The telemetry ground return length will be no

longer than 20 feet of AWG 24 stranded wire, (28.1 ohms per thousand feet).

3.1.1.2 +28 Volt Main Power Ground. The +28 Volt Main Power ground shall

be used as the return for all current drawn from the spacecraf_ +28 volt main

reg_.lated bus. ..........

Current in the power ground shall be limited to 500 mA per #22 conductor or 1 ._np

per allocated connector pin (see paragraph 3.1.2.3.2) excluding transient cu_-'rent

drawn during instrument turn on in order to rn_n_rn_ze the effec_ of harness drops.

Feedth.rough filters must be grounded to chasses to maintain box shielding effec-
tiveness and must have a capacitance value less than 0.1 pfd to limit AC currents

flowing to stn-ucture from the power bus.

3.1.1.3 +25 Volt Pulse Load Ground. The Pulse Load ground shall be used as the

power return Iine for all pulse loads (steppers, heaters, etc.) which do not comply

with the main bus ripple specification (see paragraph 3.1.3.2.6). Current in th_s

power ground shall be limited to 500 reaper #22 conductor or 1A per allocated con-

nector pin.

Feedthrough filters must be grounded to chasses to maintain box shielding effec-
tiveness and must have a capacitance value less than 0.! _fd to limit AC currents

flowing to structure from the pulse power bus.

3.1.1.4 ,-SV Kee_._ive Power Ground. The +5 volt memory keep-alive power shall

be retnrned over the signal ground pin.

3.1.1.5 Si_o_nal Ground. Signal ground shall be the power return line for the

secondary side of the instrument dcYdc converters. Current in the signal ground

out-put of the experiment shall not be more than 75 m.A per connector pin.

The signal ground may be connected to chassis by audio frequency/radio frequency

(AF/P_) bypass capacitors (less then 0.5 _.fd total) with short leads to mimmize the
effects of impedance of the signal ground lead at high frequencies.

3.1.1.6 Shield Grounding. Fo7 each preassigned shielded cable that carries a signal

into the instrument, a connect_: pin shall be dedicated to that cable's shield. The

connector pins so dedicated shall not be connected, but held in reserve. No other

signal returns or grounds shall be connected to the shield ground pins. Shield

ground shall not be used with triax cables. Except for coaxial cable, cable shields

shall not be used as a return path.
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For non-RF signal cables, the shield shall be grounded at the signal source end only.
The shield will be terminated at the connector backshell (chassis) and also carried

through a pin into the instrument. Each signal connector must provide at least one

chassis grounded pin. The chassis ground pin must be bonded internally to the

equipment chassis

3.1.1.7 Chassis Ground. Chassis (case) ground shall be provided on the same

connector (see Section 3.1.2.3.6) used to interface the spacecraft power input with

the instrument. Chassis ground shall be dc connected to the case (including outside

wrapper and mounting surface) of the instrument. Bond straps (jumpem) must be :

used across all hinges and connections that would not otherwisemeet the-bonding .....

requirement.

The chassis ground connection to the spacecra_ will be made through the mounting

surfaces and mounting hardware of the instrument. The instrument mount shall be

designed to provide a total contact resistance of less than 0.0025 ohm from the

chassis to the spacecraft. Provisions shall be made for the installation of a ground

strap if required.

The shells of all connectors interfacing with the space_a__ harness shall be

grounded to the chassis of the instrument. Conductive harness overwrap will be
connected to the conne_or shell on the harness side.

3.1.1.8 P_rotechnic Return. A separate pyrotechnic return will be supplied for each

pyrotechnic device. It shall be separated from all other grounds within the unit.

3.1.1.9 Passive Analog Telemetry Ground. Passive analog telemetry points (ther-

mistors and multi-turn potentiometers) shall have a common return line to the
GTM.

3.1.2 W'_._n_ and Connectors

3.1.2.1 Harness Desi__. PhilosoDhv, The laboratory harness will be designed in

accordance with the following _mlidelines:

(a) Harness runs will be selected to rn{n_mize overall length and weight.-

(b) Power returns will be routed in the same bundle as the associated power

lines and returned to the source in order to mlnlmize current loops.

(c) Telemetry (GTM) signals will be bundled together and in a separate bundle
from power and digital comm2md lines in order to mlnlm_ze crosstalk.

(d) Signal returns will be routed in the same bundle as the associated signal

lines in order to m{n_m_ze electromagnetic emission and susceptibility.

3282065
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UVI PDR[ DE$1(_N STATUS

SUBSYSTEM

OPTICS

ELEMENT DESIGN ENG MOD

COMPLETE FABRICATION

MIRRORS 100% AWAITING
MACHINING

FILTERS 70% IN PROCESS

FLIGHT

FAB

7/1/90

9/1/90

MACHINING DETECTORS COMPLETE IN PROCESS 1 0 / 30 / 90

FILTER WHEEL 50% 1/5 1 0/30/90

FOLDING MIRROR 10% 3 / 5 1 0 / 30 / 90

MIRROR/DOOR 10% 2/1 1 0/30/90

BAFFLES 80% 2 / 1 1 0 / 30 / 90

OPTICAL BENCH 90% 2 / 1 1 0 / 30 / 90

BASE PLATE 70% 2/1 1 0/30/90

ELECTRONICS BOX 30% 5/1 0 1 0/30/90

PASSIVE 15% 4/5 10/30/90

RADIATOR

ELECTRONICS DETECTOR A 95%

DETECTOR B 95%

DETECTOR 40%

INTERFACE

S/C INTERFACE 50%

TEC 50%

HOUSEKEEPING 50%

CPU 70%

M_ 70%

MOTOR DRIVERS 70%

POWER SUPPLIES 80%

BACK PLANE 50%

ENCODER BOARDS 10%

10/30

10/30

1/5/90

1 2/1 5/89

1/5/90

2/1/90

12/1/89

1/5/89

1 2/1 5/89

1 1/1/89

1 2/1 5/89

1/15/90

1 0/3O/89

10/30/90

1 0/30/90

10/30/90

10/30/90

1 0/30/90

10/30/90

10/30/90

10/30/90

10/30/89

1 0/30/90

10/30/90

SOFTWARE FLIGHT 10% 2 / 1 / 9 0 1 / 1 / 91

GSE 10% 2/1/90 1/1/91

KEY PARAM/TLM 0% 7 / 1 / 9 0 7 / 1 / 91

ALGORITHMS 10% ....... 1 0 / 1 / 91
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GGS/UVI FLIGHT SOFTWARE REQUIREMENTS DIAGRAM

i. Program code shall not utilize more than 8k words of PROM

space.

2. Program code shall not utilize more than 256k of RAM memory.

3. A means shall be provided by the flight program for uploading

program "patches" in the event of a software or hardware

malfunction or failure. Thls implies that the program code

shall allow portions of the main flight program to reside

in RAM memory.

4. The code shall be structured in such a manner as to circumvent

and report minor faults where possible.

5. The flight program shall implement a power on self test (POST).

The POST routine shall verify instrument functionallity.

6. The software program architecture shall be a table driven state

machine. This software structure optimizes code size and process

execution time.
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? '.

ON- ORBIT
I CCD READOUT I

+
SUM OR SAMPLE I

Reduce numoer ot plxels by following I
sequence of forming neighborhood sun_

or of decimanng _mage by samp ing I

l ENCODE VALUES OF
REMAINING PIXELS

Reduce number of bit._pixel

GROUND PROCESSING

[ TRANSMIT J

i,

GSFC RECEIVESRAW DATA

I CSHF PRODUCES ILEVEL 1 DATA

If DECODE ]/ Restore ,_eignoorhooO or samo_ed /
[values #ore received coded numoersj

CORRECTIONS
CCO resoonse corrections

Motion c_m0ensal]on if necessary
8acxground subtrac_Jon

Aspecl ra_o adjustment
NS diwsJon by 4

SG _ NS

J,

_! ARCHIVE

B LEVEL=

_I SELECT IMAGES AND N

PERFORM DESIRED B
SCIENTIFIC

L'_ ANALYSIS

CDHF ==Central Dala Handling Facility, GSFC = Goddard Space Right Cenler, KPF = Key Param=der Rle
NS = Naighborhood Sum, SG ==Sampled Grid

OVERVIEW OF DATAFLOW FROM ULTRAVIOLET IMAGER IN NOMINAL OBSERVING SEQUENCE
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DATA ANALYSIS SOFTWARE

THREE MAIN CATEGORIES:

i. KEY PARAMETERS

THIS PROVIDES SUMMARY DATA USEFUL TO THE

ENTIRE ISTP COMMUNITY

2. FULL SCALE DATA REDUCTION

REDUCTION OF SPECTRAL IMAGES TO GEOPHYSICAL

QUANTITIES

3. SCIENTIFIC MODELING OF OBSERVATIONS

INTERPRETATION OF MEASURMEENTS BY GLOBAL

MODELING OF EMISSIONS

INPUT CALIBRATED RECONSTRUCTED SPECTRAL IMAGES

BRIGHTNESS GIVEN IN RAYLEIGHS



KEY PARAMETERS

i. TOTAL GLOBAL POWERINPUT AND AVERAGE ENERGY FLUX

2. SIZE AND SHAPE OF THE POLAR CAP

3. SIZE AND SHAPE OF THE AURORAL OVAL

• TOTAL POWER INPUT AND AVERAGE ENERGY FLUX TO

THE POLAR CAP _

• TOTAL POWER INFLUX AND AVERAGE ENERGY FLUX TO THE

AURORAL OVAL

6. ACTIVITY INDICES

7. CHARACTERISTIC ENERGY ESTIMATE AT SELECT LOCATIONS

8. SELECTED AURORAL IMAGES



INVESTIGATIVE METHOD

THE UVI IMAGER WILL OBTAIN GLOBAL IMAGES OF THE EARTH

AT SEVERAL ULTRAVIOLET WAVELENGTHS. THESE WAVELENGTHS

WERE SELECTED SPECIFICALLY TO PROVIDE THE INFORMATION

NEEDED TO EXTRACT THE KEY PARAMETERS

THE WAVELENGTHS SELECTED DEFINE EMISSIONS THAT ARE

GENERATED:

- BY DIFFERENT ATMOSPHERIC CONSTITUENTS

- AT DIFFERENT ALTITUDES

- WITH DIFFERENT LEVELS OF ABSORPTION

.----.>

TASK: OBTAIN INTENSITY AT THE

REQUIRED WAVELENGTHS

SPECTRAL DECONVOLUTION SOFTWARE



UVI FILTER WAVELENGTHS AND FUNCTION

(nm) SOURCE SPECIES FUNCTION

121.6 H L= PROTONS & GEOCORONA

130.4 0 0 ABUNDANCE

135.6 0 ELECTRON ENERGY SPECTRUM

150 (BROAD) N 2 (LBH SHORT) ELECTRON ENERGY SPECTRUM

150 (NARROW) N/N 2 SPECTRAL DECONVOLUTION

165 (BROAD) N 2 (LBH MID) SPECTRAL DECONVOLUTION

ELECTRON ENERGY SPECTRUM

185 (BROAD) N 2 (LBH LONG) TOTAL ENERGY INPUT

ELECTRON ENERGY SPECTRUM

215 NO NITRIC OXIDE ABUNDANCE



IMAGE RECOGNITION PACKAGE

THIS SOFTWARE PACKAGE IS DESIGNED TO RECOGNIZE THE INNER

AND OUTER BOUNDARIES OF THE AURORAL OVAL.

TECHNIQUE INTENSITY THRESHOLD/GRADIENT DETECTION

RMS FITTING OF BOUNDARIES WITH SNAKE FUNCTIONS OR

SIMILAR TECHNIQUES

THE IRP PACKAGE WILL PROVIDE THE KEY PARAMETERS:

- SIZE (AND SHAPE) OF THE AURORAL OVAL

- SIZE (AND SHAPE) OF THE POLAR CAP

FROM THE SIZE AND SHAPE, THE TOTAL ENERGY INFLUX

PACKAGE (TEP) WILL GENERATE THE KEY PARAMETERS:

- TOTAL ENERGY INFLUX TO THE AURORAL OVAL

- TOTAL ENERGY INFLUX TO THE POLAR CAP



TOTAL ENERGYPACKAGE

THE TEP PACKAGEUSES OUTPUT FROM IRP (IMAGE RECOGNITION

PACKAGE) TO OBTAIN A MAP OF THOSE PIXELS COMPRISING THE

AURORAL OVAL AND THE POLAR CAP.

TEP THEN CALLS EFF (ELECTRON FLUX FUNCTION) TO OBTAIN THE

ENERGY FLUX AT EACH PIXEL.

TEP SUMS THE ENERGY FLUX PER PIXEL WITHIN THE DEFINED

PIXELMAP.

FROM THE FOLLOWING MAPS TEP WILL PROVIDE

GLOBAL MAP: TOTAL GLOBAL POWER INPUT DUE TO ELECTRONS

AURORAL OVAL MAP: TOTAL AURORAL POWER INPUT DUE TO

ELECTRONS

POLAR CAP MAP: TOTAL POLAR CAP POWER INPUT DUE TO ELECTRONS

ENERGY FLUX FUNCTION [EFF]

THE EFF ALGORITHM WILL COMPUTE THE ENERGY FLUX GIVEN THE

MEASURED LBH-LONG INTENSITY



SPECTRALDECONVOLUTION PACKAGE

I SPECDEC

UNDER THE UVI PROGRAM AN ENTIRE NEW TECHNOLOGY WAS

DEVELOPED TO BUILD FILTERS WITH SUFFICIENTLY NARROW

BANDBASS AS TO BE ABLE TO ISOLATE KEY SPECTRAL LINES.

BECAUSE OF THE PROXIMITY OF SOME OF THE SPECTRAL FEATURES

SOME DECONVOLUTION IS REQUIRED. THIS PROCESS UTILIZES

THE SPECTRAL INFORMATION FROM SEVERAL FILTERS TO ISOLATE

INDIVIDUAL LINES



GRIP POINTS ROUTINE

THIS ROUTINE IS USED TO DEFINE THE LOCATIONS AT WHICH

THE CHARACTERISTIC ENERGIES OF THE PRECIPITATING ELECTRONS

ARE TO BE COMPUTED. THE DEFAULT GRID WILL BE AXES

CENTERED ON THE DAWN-DUSKAND NOON-MIGNIGHT GEOMAGNETIC

MERIDIANS.

THE GRID SPACING WILL BE 1 o TO 5 o IN LATITUDE WITH

SPECIFIED HIGH-LOW BOUNDARIES



CHARACTERISTICELECTRONENERGY

CHEE I

THE CHEE PACKAGE WILL COMPUTE THE CHARACTERISTIC ENERGY OF

PRECIPITATING ELECTRONS AT A SPECIFIED SET OF GRID POINTS.

DEFINED BY THE GP ROUTINE

THE DEFAULT GRID WILL BE ALONG AXES SAMPLING FOUR

SECTORS COVERING THE DAWN-DUSK AND NOON-MIDNIGHT MERIDIANS

AT "I TO 5 o IN LATITUDE

THIS ROUTINE WILL COMPUTE THE RATIOS:

II356/LBH-LONG LBH-SHORT/LBH-LONG

IT WILL USE LOOK UP TABLES ILLUSTRATED IN FIGURES 1

AND 2 TO ESTIMATE THE CHARACTERISTIC ENERGY AT THE

PRESCRIBED GRID POINTS
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SELECTED AURORAL IMAGE PACKAGE

SAI

THE SAI PACKAGE WILL GENERATE A FULL INTENSITY COLOR

PLOT OF THE LBH-LONG EMISSION (= TOTAL ENERGY FLUX)

APPROXIMATELY ONCE EVERY 10 MINUTES.

ACTIVITY INDICES

AI

THE AI PACKAGE WILL SCAN THE LBH-LONG IMAGE AT INTERVALS

OF I0 MINUTES AND COMPUTE THE PERCENTAGE AREA IN FOUR

SECTORS FOR WHICH THE IMAGE BRIGHTNESS EXCEEDS GIVEN

THRESHOLDS, E.G. IKR, 10KR, i00 KR.



KEY PARAMETER FLOW CHART

I READ INCOMING DATA STREAM I

STRIP OUT DATA FOR KEY PARAMETERS

CYCLE TIME i0 MINUTES

i
CALL SAI

L
----9 SELECTED AURORAL

IMAGE (LBH-LONG)

CALL EFF

ENERGY FLUX

PER PIXEL

i
CALL TEP ----)

1

TOTAL GLOBAL

(ELECTRON) POWER INPUT

CALL AI

L
CALL IRP

----9

----9

6

ACTIVITY INDICES

2 AND 3

BOUNDARIES OF

AURORAL OVAL

AND POLAR CAP



I CALL TEP I
----9

4 AND 5

TOTAL AURORAL

POWER INPUT

TOTAL POLAR

CAP POWER INPUT

CALL GP

---_ GRID FOR

CHARACTERISTIC

ENERGY

CALL SPECDEC

SPECTRAL INTENSITIES

I135.6, LBH-SHORT

LBH-LONG

CALL CHEE

SPECTRAL RATIOS

----9

CHARACTERISTIC

ENERGIES OF

ELECTRONS VS LAT,

IN 4 SECTORS



FULL-SCALE DATA REDUCTION

THE UVI WILL PRODUCEONE IMAGE EVERY -30 SECONDS.

THE NOMINAL OPERATIONALMODEWILL BE TO CYCLE THROUGHTHE
FILTERS.

THUS THE MAXIMUMTEMPORALRESOLUTIONPOSSIBLE IN THIS MODEIS -4
MINUTES FOR 8 FILTERS.

THE FULL-SCALE DATA REDUCTIONWILL INVOLVE THE FOLLOWINGSTEPS:

I. GENERATEGLOBAL GRID OF THE ENERGYFLUX USING LBH-LONG.

2. DECONVOLUTETHE SPECTRALFEATURES.

3. COMPUTESPECTRALRATIOS NEEDEDFOR CHARACTERISTIC
ENERGIES.

4. COMPUTETHE GLOBAL GRID OF CHARACTERISTIC ENERGIES.

i. USING II35.6/LBH-LONG (SEE FIG. i)

2. USING LBH-SHORT/LBH-LONG (SEE FIG. 2)

5. COMPUTE THE GLOBAL NO COLUM_ ABUNDANCE RUN I215.

6. COMPUTE THE GEOCORONAL BRIGHTNESS FROM H Ly _.

7. COMPUTE THE GLOBAL COLUMN 0 ABUNDANCE FROM I130.4



SCIENTIFIC MODELING

THE IMAGES TO BE TAKEN BY THE VISIBLE AND ULTRAVIOLET

IMAGERS ON THE ISTP MISSION REPRESENT THE END PRODUCT OF MULTI-

FARIOUS PROCESSES WHICH RESULT IN THE TRANSPORT OF ENERGETIC

PARTICLES FROM THE SUN TO THE EARTH. THE IMAGES THEREFORE CAN BE

MAPPED BACK INTO VARIOUS DISTANT REGIONS OF THE SOLAR TERRESTRIAL

ENVIRONMENT. THUS MEMBERS OF THE ISTP IIWG WILL HAVE THEIR OWN

PARTICULAR INTEREST IN VARIOUS ASPECTS OF THE IMAGING DATABASE.

WE CONCENTRATE HERE ON THE SPECIFIC INTERESTS OF THE UVI

TEAM.



UVI SCIENTIFIC GOALS:

PRIMARY GOAL: GLOBAL MODELINGOF THE TERRESTRIAL IONOSPHERE,

AIRGLOWAND AURORA.

MODEL: FIELD LINE INTERHEMMISPHERICPLASMAMODEL (FLIP) (TO BE

UPGRADEDFOR ISTP) _ GLOBAL EMISSIONS MODEL

MAJOR PREVIOUS LIMITATION: GLOBAL CORPUSCULARIONIZATION AND

EXCITATION SOURCESWEREUNKNOWN.

NOTE: NO IMAGING SYSTEMOF THE PAST HAS PROVIDED
SUFFICIENT INFORMATIONTO GENERATEGLOBAL IONIZATION
AND EXCITATION RATES.

THE UVI WILL DO THIS.

NEEDED DATA: ENERGYFLUX AND CHARACTERISTICENERGYPER PIXEL.

FLIP _ GLOBAL ATLTITUDE PROFILES OF
IONIZATION AND EXTRACTIONRATES.

GLOBEL MODELING



MID AND LOWLATITUDE MODELOF THERMOSPHERIC EMISSIONS:

I. O+(2P) 7320 A AND N 2 (2P) 337i A

Marsha R. Torr

Space Sciences Laboratory

NASA Marshall Space Flight Center

Huntsville, AL 35812

D. G. Tort and P. G. Richards

University of Alabama in Huntsville

Huntsville, AL 35899

S. P. Yung

Boeing Corporation

Huntsville, AL 35899

Submitted to J. Geophys. Res.

September 1989
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Auroral Modelling of the 3371 I Emission Rate: Dependence

on Characteristic Electron Energy

P. G. RlCHARDS

Computer Science Department and Center .for Space Pla:ma and

Aeronomic Research, Universtty o/ Alabama in Huntsedle

D. G. TORR

Physics Department and Center/or Space Plasma and Aeronornic

Research, University ot Alabama in Huntsville

We have developed an ef_cient two-stream auroral electron model to study the deposition of

auroral energy and the dependence of auroral emission rates on characteristic energy. This model

incorporntes tile concept of average energy loss to reduce the computation time. Our simple two-

stream model produces integrated emission rates that ere in excellent agreement with the much

more complex multistream model of gtrici:land et al. [1983] but disagrees with a recent study

by ReeJ and Lummerzheim [198g] that indicates that the N2 second positive emission rate is

strongly decreasing function of the characteristic energy of the precipitating flux. Our calculations

reveal that a 10 keV electron will undergo approximately 160 ionizing collisions with an average

energy loss per collision of 62 eV before thermallzing. The secondary electrons ere created with

an average energy of 42 eV. When ell processes including the backscattcred escape fluxes ere

taken into account, the average energy loss per electron-ion pair is 35 eV in good agreement with

laboratory results.

Short title

RICHARDS AND ToRR: AURORAL 3371 A

RICHARDS AND TORR: AURORAL 3371 ._.

EMISSION RATE

EMISSION HATE



The Dependence of Modeled OI 1356 and N_ LBH

Auroral Emissions on the Neutral AtmosPhere

°

G. A. Germany _ and M. R. Tort

Space Sciences Laboratory, NASA Marshall

Space Flight Center, Huntsville, A1 35812

P. G. Richards and D. G. Torr

University of Alabama in Huntsville,

Huntsville, Al 35899

1 This work was done while the author held a National

Research Council-NASA Research Associateship.

Submitted to Journal of Geophysical Research,

September 1989



A Midlatitude Interhemispheric Model of the O+(2P)

Airglow Emission at 7320A

by

Marsha R. Torr

Space Science Laboratory

Marshall Space Flight Center

Huntsville, Alabama 35812

D. G. Torr and P. G. Richards

The University of Alabama in Huntsville

Huntsville, Alabama 35899

Submitted to Geophysical Research Letters

June 1989
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Vacuum ultraviolet thin films. 1: Optical constants of
BaF2, CaF2, LaF3, MgF2, AI203, HfO2, and SiO2
thin films

Muamer Zukic, Douglas G. Torr, James F. Spann, and Marsha R. Torr

The opticalconstantsofMgF2 (bulk)andBaF__,CaFz,LaF_,MgF2,AI20_,HfO2,andSiO__filmsdepositedon
MgF_ substratesaredeterminedfromphotometricmeasurementsthroughaniterationprocessofmatching
calculatedandmeasuredvaluesofthereflectanceand transmittanceinthe120-230-nmvacuumultraviolet

wavelengthregion.The potentialuseofthelistedfluoridesand oxidesasvacuum ultravioletcoating
materialsisdiscussedinpart2ofthispaper.

I. Introduction

The optical constants of materials in the vacuum

ultraviolet (VUV) region of the spectrum are of inter-
est to several areas of technology. Most applications
such as high reflectivity mirrors and bandpass and
narrow bandpass interference filters involve thin
films. The design of optical instrumentation for space
astronomy, space aeronomy, spectroscopy, and the de-
velopment of electrooptic devices are critically depen-
dent on experimental data for optical constants of thin
films.

We report measurements of optical constants of
BaF2, CaF_,, LaFa, MgF2, A1203, HfO2, and SiO2 thin
films, and MgF2 bulk material over the 120-230 nm

VUV spectral range. The optical properties of MgF2
film and bulk materials in the vacuum ultraviolet spec-
tral range have been reported in a number of papers, l-9
while optical constants of other fluoride and oxide

films presented in this paper are reported we believe
for the first time for the 120-230 nm wavelength range.
It is found that BaF2 and LaF_ may be used as high
refractive index film materials for constructing a high-
low index pair with MgF2 being the most useful low
index material in the VUV.

Optical properties of lanthanide trifluoride films
and their potential use as high refractive index film
materials in the vacuum ultraviolet were investigated
by Lingg et al. 10 Although optical constants of lantha-

James Spann and M. R. Torr are with NASA George C. Marshall
Space Flight Center. Huntsville, Alabama 35812; the other authors
are with University of Alabama in Huntsville. Physics Department,
Huntsville, Alabama 35899.

Received 28 September 1989.

nide trifluorides for the VUV range are not presented
in the paper, plots of the measured transmittance sug-
gest that some of these trifluorides may be useful coat-
ing materials for wavelengths as low as 140 nm. Mea-
sured transmittances of films obtained by the ion-
assisted and conventional depositions are compared
and discussed within the paper.

Optical constants of an isotropic material--refrac-
tive index n and extinction coefficient k--_an be in-

ferred from photometric or polarimetric measure-
ments. Since compensators or transmission
polarizers are not generally available in the VUV from
120 to 230 nm, photometric methods are almost exclu-
sively used for obtaining n and k. A number of meth-
ods exist for extracting optical constants from reflec-
tance (R) and transmittance ( 73 measurements at both
normal and oblique angles of incidence. Because R
and T are very complicated functions of optical con-
stants _L12 it is generally impossible to express optical
constants as explicit functions of R and T. Most ap-
proaches to solving this complicated dependence in-
volve either graphic or numerical techniques. 13-2°
The expressions are nonlinear so the problem may be
considered as a numerical exercise in which n and k are

found through an iteration process of matching calcu-
lated and measured values of reflectance and transmit-
tance. The retrieval of optical constants from mea-
surements of R and T is a well-established approach,
but it has not been fully exploited for the VUV regime.
The numerical method employed by us is based on the
use of a damped least-squares fit approach which is
incorporated into a thin film design computer pro-
gram. The damped least-squares fit technique pro-
vides a rapid and reliable retrieval mechanism for n
and k in matching measured and calculated quantities.
It is surprising that to our knowledge the method has
not been fully utilized previously. This fitting method
is described in Sec. II.

4284 APPLIEDOPTICS / Vol. 29. No. 28 / 1October 1990



TM
Fig. 1. Measurement of reflectance Ri from the wedged substrate

to avoid contribution from the back side reflectance. ::ansmit-

tance Tv was measured on a 2-mm thick parallel substrate.

In Sec. III the experimental techniques are present-

ed, including sample preparation and handling, reflec-

tance and transmittance measurements, and deposi-

tion of thin films. The optical constants of MgF_,

(bulk) and BaF:, JaF2, LaF:_, MgF.,, AI._,O_, HfO._,, and

SiO2 thin films _deposited on MgF_ substrates) are

given in Sec. IV. Conclusions and a summary are

given in Sec. V.

II. Determination of Optical Constants

Beam diagrams for the measurement and calcula-

tion of the opticnl constants of the substrate and sub-

strate with a si1:_:e thin film are shown in Figs. 1-4.

Reflectance R_ tz_m the semi-infinite media is mea-

sured by means of a wedged substrate, and transmit-

tance Tv is measured using a plane-parallel substrate

as shown in Fig. 1. From the beam dia._ram for theo-

retical derivation of transmittance of ti_z nonabsorb-

ing slab To, shown in Fig. 2, it follows that

T., = T_(1 - R_) + T_R_(1 - R,}

+ T_R_(1 - R_) + TtR_(1 - R_} + .... (1)

and after multiplying we get

Using the binomial expression, the transmittance of a

thick nonabsorbing slab can be written as

Fig. 2.

T1 RSl

LO "RO R (1

T 1R_(1- R1)

Beam diagram for theoretical derivation of the transmit-

tance or"the nonabsorbing thick slab.

Fig. 3. Measurement of reflectance R_ of the single film deposited

,, "he wedged substrate. R_ is the calculated reflectance of the
- . film with the substrate as an incident medium and air as an

eme.:ng medium. T_ is the calculated transmittance of the single
film _-andwiched between two semi-infinite media--air and sub-

strate.

T 1 I - RI

I+R_ I+R_'
(3)

where R_ is the measured reflectance from the single
side of the substrate. If absorption is present in the

1 October t990 / Vol. 29. No. 28 / APPLIED OPTICS 4285



TFRfR 

TF R

TF TI (R I R_) 2

Fig. 4. Beam diagram for theoretical derivation of transmittance

T_ of the single film deposited on the nonabsorbing substrate.

slab, the measured transmittance is smaller than that

calculated theoretically using Eq. (3). If the measured
transmittance is denoted as TM, the total loss due to
the substrate absorption is given by

T_
A = 1 To, (4)

and the correction factor for any other transmittance
measurement on this substrate at the particular wave-
length by

T_
c = -- (5)

to

Since the imaginary part of the refractive index of the
MgF,_ substrate is very low (of the order of 10-7), it does
not affect significantly the measured reflectance R1 on
the wedged substrate. Thus, RI can be used in the
calculation of refractive index n of the substrate, i.e.,

(n - I)-'

R_ (n + 1) "_' (6)

1 + ,'R I
n =--__. (7)

1 -vR_

The correction factor given in Eq. (5) can be consid-
ered as the intrinsic transmission of the substrate ma-

terial. Using the known relation for light propagating
through the absorbing media

l(z) = I(0) exp(-az), (8)

where the coefficient of absorption a is given by

a = 4_ k, (9)

we get

= - _ [.I-(-O_J (i0)

The ratio I(z)/I(O) is the so-called intrinsic transmis-

sion of the medium (no reflection occurs). Using our
correction factor C defined in Eq. (6) we have

,\ /T_f\

k= - 4_-_ lnt-_0 ), (11)

where D is the thickness of the substrate. Thus, from
measured values RL and T_I using Eqs. (7) and (11),

optical constants of the weakly absorbing substrate
(MgF2 in our measurements) can be obtained. As an
example, consider measurements done at X = 135 nm
on the MgF2 substrate with thickness D = 2 ram. The
measured reflectance of the wedged substrate was R1 =
5.5% and the measured transmittance TM = 77.4%

giving n = 1.61 and k = 6.2 X 10 -7 which agrees perfect-
ly with known values for bulk MgF2 in the VUV. 7

From the beam diagrams for reflectance and trans-
mittance measurements given in Figs. 3 and 4 it follows

that ToF is

rFo = TFT,[1 + RtR F + (R_R() 2 + (R_R() s + (R_R_)4. . . ], (12)

and again using the binomial expansion we obtain

T_T1 TF(I -- RI)

T,_ = I - R,R_" i - R,R_" ' (13)

where R_ isthe calculatedreflectanceof a singlefilm
with a substrate as an incident medium and air as an

emerging medium (substrate), and TF is the calculated
transmittance of a single film sandwiched between the
incident medium and semi-infinite substrate.

Equation (13) gives the transmittance of the single
absorbing film on the nonabsorbing substrate. Using
the correction factor defined in Eq. (5) we express the
transmittance of the substrate with a single film

Tf(l - R_)
:_c= C . (14)

I - R,R_

Using Eq. (14) and calculating R E from the initial
values ofn and k, we form the merit function Fdefined
as

. T,)" (15)F = W,IR(- Rt:): + W,,(T_} - _ '

where Re and R F are the measured and calculated
reflectances of the film on the wedged (semi-infinite)

substrate; T_ and T_ are measured and calculated
values of transmittance through the plane-parallel
substrate with a single film; Wl and We are the weight-
ing factors chosen according to the relative accuracy of
the R and T measurements for each wavelength.

Merit function F is then minimized using a damped
least-squares approach. This is implemented as a
subroutine in a computer program for thin film
design. "q Reflectances R( and R_ and transmittance
TcF are calculated using values of n and k at the particu-
lar wavelength. Merit function

F F F F F
F = F[R t ,Rc,TM,Tc(R_)] (16)

depends on five variables of which three are dependent
on n and k of the film. Thus, the minimum value of F
has a high probability of providing accurate values for
the optical constants of the thin film.

4286 APPLIED OPTICS / Vol. 29, No. 28 / 1 October 1990



To minimize uncertainties in the optical constant
determination, several single films of the same materi-
al but with different thicknesses are deposited on sepa-
rate substrates. The total merit function Fr is then

given by

Fr = \_ F.,, _17)

where F. is the merit function of the nth film defined in

Eq. (15) and L is the total number of single films with
different thicknesses deposited either on the same
type of substrate material or on several different types
of substrate material.

III. Experimental Techniques

A. Sample Preparation and Handling

All depositions are made on 12.7-mm diam by 2-mm
thick magnesium fluoride substrates with root mean
square roughness (usually referred as rms 2-_)<2.5 nm.
To eliminate the contribution of the back side reflec-
tion to the reflectance measurements, some of the sub-
strates have a 3° bias. The substrates were cleaned by

the supplier (Acton Research Corp., Acton, MA} using
the following procedure: optical soap wash, water
rinse, ethanol soak then ultrasonic bath, fresh ethanol
rinse, and finally a Freon rinse.

The substrates were shipped in Delrin holders
wrapped with lens paper and were only removed im-
media:ely prior to deposition. After deposition, the
substrates were allowed to cool to 40°C, and the vacu-

um chamber was vented with dry nitrogen. The sub-
strates were kept in the flow of dry nitrogen and placed
in a stainless steel container to prevent contamination
due to exposure. All depositions were made at the
University of Alabama in Huntsville Optical Aerono-
my Laboratory and the transmittance and reflectance
measurements were made at Atomic Physics Branch of

the Marshall Space Flight Center.

B. Deposition of Thin Films

The vacuum system consists of a cryo pump and a
sorption pump giving an oil-free environment for all
depositions and therefore providing a very low proba-
bility for hydrocarbon contamination of the films.

The film materials BaF2, CaF2, and LaFa were pre-
pared for vacuum deposition by CERAC with a typical
purity of 99.9%. Alo.Oa (99.5%), SiOo (99.98%), and
MgF_ (99.95%) are standard Balzers coating materials
while HfO., with a purity of 99.5% was prepared by EM
Chemicals.

The fluoride films were deposited with low ieposi-
tion rates on heated substrates. To reoxidize ,:zssoci-
ated molecules of the oxides A1203, HfO2, and SiO?, the

films were deposited at a low deposition rate on heated
substrates in an oxygen residual atmosphere. The
temperature of the substrate was monitored with a
Chromel-Alumel thermocouple attached to the alumi-
num substrate ring holder. The substrate and its ring
holder were placed in a 6-mm thick stainless steel plate

Table I. Dei_lltion Conclltions

P,, P D_ d
Material iTorrl (Tom _nm/s ) Inm)

BaF_, 9.5 x I0-: 1.5 x I0-" 0.16 53.0
CaF., 8.5 X I0-: 2.5X I0 -_ 0.20 99.0
LaF_ 8.5 x [0 -_ 2.0 x I0-" 0.14 51.0
MgF._, 8.5 x I0 -_ 2.5 X I0 -" 0.23 68.0
AI.,O_a S.5 X I0-: 1.0 X I0 -_ 0.i0 112.0
HfO=, 8.5 x I0-: 1.5 X I0 -_ 0.I0 30.0
SiO_ 9.5 x I0-" 1.2 x I0 -_ 0.I0 51.0

' Oxygen leaked into the chamber during deposition of the oxides.

with 40-cm diameter. Further details about the con-

ditions of depositions are given in Table I.
The depositions were made with an electron gun.

The gun had a fixed voltage of 10 kV and low power
depositions were maintained by supplying low current
to the gun. The source-to-substrate distance is 50 cm
and the source-to-thickness monitor distance was 35
cm. The thickness control and rate measurements

during film depositions were done with the Kronos
Digital Film Thickness Monitor QM-300 series and the
Kronos Deposition Rate/Thickness Output Accessory
RI-100/RO-200 series with FFT-300 transducer.

The vacuum chamber geometry provided excellent
calibration constants Cc for all film materials. The
calibration constant Cc is defined as the ratio of the

film thickness expressed in transducer counts {hertz)
and the measured thic. _ess in nanometers, i.e., the
number of ,-ounts (hertz) needed to obtain a 1-nm
thick film. Fhe values of Cc varied from 44.09 Hz/nm

for MgF2 up to 72.23 Hz/nm for LaFa. The physical
thickness measurements o,_':he films were made with a

Talystep stylus profilometer. The stylus radius is 2
um and the stylus loading is 1 mg.

The physical thicknesses for each material are cho-
sen according to the following criteria:

(a) nonzero transmittance measurements over most
of the considered spectrum;

(b) no overlap of maxima and minima for R and T
measurements; and

(c) at least one measurement must be close to the
possible physical thickness in the design of either 'a
multilayer interference filter or an absorbing single

layer coating.

C. Photometric Measurements

Transmittance and reflectance measurements were

performed in a hydrocarbon-free vacuum system at
pressures below 10 -5 Tort. A sealed deuterium lamp
with a MgF2 window was used in tandem with a 0.2-m
monochromator producing a beam with 1-nm FWHM

spectral resolution. Folding and collimating optics
were used to produce a 1- x 0.75-cm reference beam
which is incident on an eight-position filter wheel con-
taining the substrates. Different detectors were used
for transmittance and reflectance measurements.
Each detector consists of a sodium salycilate-coated

Pyrex window placed in front of a bialkali photometer.
A schematic diagram of the system optics is shown in

Fig. 5.

1 October 1990 / Vol. 29, No. 28 / APPLIEDOPTICS 4287



Fig. 5.

DeuteriumLamo
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,
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(reflect¢oni

FHterWheet
Monochrornator ,win SuDstrates

Schematicdiagram of the singlebeamVUV spectrophotom-
eter.

Absolute transmittance and reflectance were mea-

sured by determining the ratio of the transmitted or
reflected beam intensity and the unattenuated inci-
dent beam intensity. For reflectance measurements,
the unattenuated beam intensity was determined by
the measured reflectance of a calibrated VUV-en-
hanced aluminum mirror located in one of the filter

wheel positions. The reflectance measurements were
made at a 6 ° angle of incidence.

The aluminum mirror was calibrated by Acton using
the ACE-type _3 self-calibrating VUV photometer.
The estimated error of this instrument for reflectance
measurements is <2%. The uncertainties associated
with the thin film thickness, reflectance, and transmit-
tance measurements resulted in the total uncertainty

for optical constants determination of the order of
4-5%. This uncertainty is derived from discrepancies
between the theoretically and experimentally ob-

tained spectral performance of deposited VUV multi-
layer filters. In the theoretical calculation, films are
assumed to be homogeneous, isotropic, and bounded
by two infinite ideal planes. Thus. the discrepancy
between theory and experiment is caused by both
physical effects (such as film inhomogeneity, surface
and volume scattering, diffusion, and possible con-

tamination) neglected in the theoretical calculation
and the uncertainty in the optical constant determina-

tion. Taking all this into account we might say that
the maximum uncertainty for optical constant deter-
mination is <5%.

IV. Optical Constants

A. MgF 2 Substrate

The reflectance and transmittance measurements

shown in Fig. 6 were made on wedged and 2-mm thick

parallel substrates, respectively. Optical constants n
and k shown in Fig. 7 were determined using Eqs. (8)
and (12).

B. Fluoride Films

The temperature of the MgF2 substrate during de-
position of the fluoride films is 250°C. The pressure
before (Po) and during deposition (P) as well as the

4288 APPLIEDOPTICS / Vol. 29, No. 28 / 1October 1990
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Optical constants of the MgF: substrate determined using
Eqs. (81 and (12).

deposition rates (DR) and physical thicknesses of the
films (d) are listed in Table I. Single sets of the R and
T measurements of BaF_, CaFe, LaF_, and MgF_ films

deposited on MgF_ substrates are given in Figs. 8, 10,
12, and 14, respectively. The corresponding optical
constants determined from at least two independent R

and T measurements [Eq. (19)] are given in Figs. 9, 11,

13, and 15.
From the reflectance and transmittance curves of a

53-nm single film of BaFo, it follows that this coating
material can be used for wavelengths longer than 135
nm. Even a single film of BaF_ could be used as a cut-
on filter if wavelengths shorter than 130 nm are not
desired. Refractive index n has values between 1.87
and 2 for wavelengths from 125 to t35 nm and it is

higher than 1.7 throughout the region from 140 to 210
nm, increasing up to 1.98 at 230 nm. Extinction coeffi-
cient k has values of the order of 10 -_ for wavelengths
from 140 to 230 nm.

The measured reflectance and transmittance of a 99-
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nm thick CaF_. film indicate low values of refractive
index n and a relatively small extinction coefficient k
for wavelengths longer than 135 nm. The values of
refractive index n of CaF2 are lower than 1.3 for _, > 180
nm, and the k values are of the order of 10-" for the

same wavelength region. Low values of the refractive
index make CaFt suitable for use as the alternative low

index material for the longer wavelengths of the VUV.
The material with the highest values of refractive

index among all the fluorides n > 1.85 within the 135-
230 nm range of the VUV wavelengths is LaF._. The
extinction coefficient has values lower than 2.2 x 10 -_

for _ > 145 nm. Compared with other fluoride and
oxide coating materials LaF._ seems to be the best
choice for the high index material in the considered
spectral region.

Magnesium fluoride films have extinction coeffi-
cient values lower than 10 -4 throughout the entire

140-230-nm wavelength region. This makes MgF2 the

On_C_,,,_' PAGE IS

OF pool qtlnUiTY

most attractive low index material for the VUV. The

n and k values of MgF2 film deposited on the substrate
heated up to 250°C reported by Wood et al. _ at 121.6
nm are n = 1.7 4- 0.1 and k close to 0.01 are in good

agreement with values reported here. Unfortunately,
we are unabk _ to compare these n and k values of MgF2
with the values obtained by some other authors be-
cause either the MgFe films were prepared in different
conditions or insufficient experimental data were pro-

vided by the _._her workers. _-_°

C. Oxide Films

The temperature of the MgF2 substrate during de-

position of oxide films was 300°C. The deposition
conditions P0, P, and D_, as well as the physical thick-
nesses of films d, are listed in Table I. The measured

spectral curves of R and T for Al_O3, HfOe, and SiO_
films deposited on MgF_ substrates are shown in Figs.
16, 18, and 20 while the corresponding optical con-

1 October 1990 / Vol. 29, No. 28 / APPLIED OPTICS 4289
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stants are given in Figs• 17.19, and 21, respectively.
The transmittance curve of a i12-nm thick A1.)O:_

single film suggests that this material could possibly be
used for the design of absorption edge filters with cut-
on wavelengths between 160 and 180 nm depending on
the thickness of the A12Oa film. The values of refrac-
tive index n are higher than 1.85 for almost the entire
region from 120 to 230 nm while the k values are higher
than 10-t for 120 nm _< X < 175 nm.

The HfO._,film has the highest extinction coefficient
(shown in Fig. 19) and it does not seem that this mate-
rial could be useful for the vacuum ultraviolet wave-
length region, particularly for wavelengths below 200
rim.

The values of refractive index n of SiO? films are
very close to the values of bulk SiO2, while the h values
are an order of magnitude higher, u4 The refractive
index n > 1.8 for 125 nm < X _< 150 nm and decreases
gradually to 1.6 at 200 nm. Extinction coefficient k is

! if']_ ! P IORi,_,,N,:_. PA_E "

OF POOR QUALITY

of the order of 10-t for 120 nm > X > 135 nm which
makes SiO2 a useful material for the design of a single
layer absorption edge filter with cut-on wavelengths
within the interval from 125 to 135 nm depending on
the relative thickness of SlOe film.

V. Summary

We demonstrated that iterative mathematical mod-
eling of transmittances and reflectances measure-
ments provides a reliable way for determining the opti-
cal constants of thin films deposited on the weakly
absorbing substrates. In part 2, proof of the validity of
the approach is demonstrated by design and fabrica-
tion of multilayer coatings. The model is used for the
VUV wavelength region but its application extends
over the whole visible and IR spectrum whenever a
substrate has a low value of extinction coefficient k
such that its effects on the substrate reflectance are
negligible.
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The fluoride film materials have generally lower
extinction coefficients than the oxides. High values of
refractive index n make LaF:_ and BaF_ useful materi-

als for the VUV, particularly for constructing a high-
low index pair with MgF_ being the most useful low
index material. The designs of the VUV coatings such
as narrowband pass, and narrowband reflection filters
are possible with these materials.

SiO_ coating material, among other oxides measured
in the VUV, seems to be the most applicable for design
of multilayer stacks such as the narrowband reflection
filters. A120:_ coating material may be used for the
design of absorption edge filters for _ > 160 nm, while
HfO2 becomes a useful high index material for wave-

lengths longer than 230 nm.
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Muamer Zukic, Douglas G. Torr, James F. Spann, and Marsha R. Torr

We report the design and performance of narrowband transmission filtersemploying the rapidly changing

extinction coefficientthat ischaracteristicof BaFo.and SiO2 filmswithin certain wavelength intervalsin the

vacuum ultraviolet. We demonstrate the design concept fortwo filterscentered at 135 nm for BaF2 and at 141

nm forSiO2. Itisfound that these filtersprovide excellentnarrowband spectral performance when combined

with narrowband reflectionfilters. The filtercentered at 135 nm has a peak transmittance of 24% and a

bandwidth of 4 nm at full width at half-maximum for collimated incident light. The transmittance for ko <

130 nm is <0. I% and for 138 < h_ < 230 nm the average transmittance is <3%. Another filter centered at 141

nm has a peak transmittance of 25% and a bandwidth of 3.5 nm.

I. Introduction

The design of all-dielectric multilaver interference

filters for the vacuum ultraviolet (VIJV) wavelength
region from 120 to 230 nm is limited by the lack of film
materials with suitable optical constants. Film mate-
rials such as MgF2 and LiF have tow values of refrac-
tive index n (the real part of the optical constant) and
relatively low values of extinction coefficient k (the
imaginary part of the optical constant) within the

VUV wavelength region. The low resistance to high
energy radiation damage in a space environment i
makes LiF not very useful as a material for interfer-

ence optical filters intended for many space applica-
tions, reducing the choice of low index film materials to
just MgF_.

For their values of the extinction coefficient, both
BaF_ and LaF:_ may be used as the high index materi-
als _ to form a high-low (HL) index pair together with
MgF__. A HL pair, made either with BaF2-MgF2 or
LaF:_-MgF2, can provide the basic sequence of a multi-
layer design which can be used for wavelengths as low
as 130 nm. A brief review of the basic theorv for such
multilayers is given in Sec. II, while theoretical calcula-
tions of so-called tuned multilayer interference filters
with absorbing film materials are given in Sec. III.

All-dielectric Fabry-Perot type filters employing

James Spann and M. R. Torr are with NASA George C. Marshall

Space Flight Center, Huntsville, Alabama 35812: the other authors

are with University of Alabama in Huntsville. Physics Department,
Huntsville. Alabama 35899.

Received 9 November 1989.

BaF__ and MgF2 are considered in See. IV along with an
alternative design for narrowband transmission filters.

Designs of narrowband reflection filters are also given
in that section. Spectral performance is compared to
transmission filters. It is found that, for a small cone

of light (±5 °) centered about some incident angle,
reflection filters when combined with transmission fil-

ters can provide excellent spectral performance in the
VUV. A summary and conclusions are given in Sec. V.

II. Basic Theory

A. VUV Absorption of Dielectrics

Absorption of dielectrics in the VUV can be treated

with classical or quantum mechanical theory. Be-
cause of the present accuracy of the reflectance and

transmittance measurements there is no advantage to
using the quantum mechanical approach; thus the
classical model is used for the calculation of optical
constants. In this model, bound electrons in a dielec-
tric illumination with electromagnetic radiation are
treated as damped harmonic oscillators, j

To determine the optical constants of metals, the
classical theory uses the free electron gas model. 4 Ab-
sorption of incident electromagnetic radiation in di-
electrics and in metals are two different physical phe-
nomena (bound electrons in dielectrics and free

electrons in metals), but the final result is the same,
i.e., loss of incident intensity.

Both phenomena can be described in terms of a
complex optical constant. However, the transition
from the real optical constant of a lossless medium
(dielectrics in the visible part of the spectrum) to the

complex one of an absorbing medium requires a redefi-
nition of phase velocity v and wavenumber kx such that

1 October 1990 / Vol. 29, No. 28 / APPLIED OPTICS 4293
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(where N is the complex optical constant) are now the

complex quantities. In addition, the angles between
the direction of the light propagation and the normal
to the film plane are also the complex quantities and
they no longer represent just the refraction of the
propagating light.

B. Multilayers with Absorbing Film Materials

The VUV coatings presented in this paper consist of
an HL pair with BaF2, LaF_, or SiO2 as the high index
materials and MgF_ as the low index material. Since
extinction coefficient k of the MgF2 films is <I0 -:_ for
wavelengths longer than 130 nm, it is neglected in the
theoretical discussion concerning the angles of light
propagation through the absorbing multilayers.
However the extinction coefficient of MgF2 films is
taken into account in the exact calculation of multi-
layers.

The amplitude reflection and transmission coeffi-

cients for the plane electromagnetic wave incident on a
multilayer are ,_

tM_ + M_.?J_,_ - (M,_ + M.z,,_ ,)
r = (31

(M_ + M ,.,_)% + (M,2I+ Iff,:_n)

2)'/0
t = (4)

(Mi I + Mv,_)'),))h) + (M.q + M.,__q,)

where r_, and n, are the effective optical constants of
the incident mL-dium and the substrate, respectively.
They are defined as

)7,,= n,, cos0_. (5)

n,= _ cos_ (6)

for s-polarization; and for p-polarization

cosOn

,,- (7)

cosO_
7. - (8)

/2<

where n. and n, are the refractive indices of the inci-

"_:nt medium and the substrate, respectively. It is
assumed that both the substrate and incident medium
have negligible extinction coefficients and. therefore,
real optical constants. The terms M,,, i,j = 1.2 are the
elements of the multilayer characteristic matrix M

which is defined as the product of the matrices of the
individual layers Jfft (l = 1,2 .... P),

M = M_M_,...Mp, (9)

where P is the total number of layers. Matrices M! are
given by

/ cos5, -_ sin_r\
M,

/\ir), sin5, r_i'os$, ) (I0)
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The phase terms &, which are usually referred to as the
phase thicknesses or the films, are defined by

,5 = -" N d cosO,, (11)
,\r_ "

where X. is the vacuum wavelength of the incident
light, N_ is the optical constant of the/th layer defined
as

.v, = n(1 + l_,)= n, + in!. I = n, + ik!, (12)

with x<= k</m, and where m is the refractive index, kt is
the extinction coefficient, d/is the physical thicknes-
s.and Oz is the complex angle of light within the/th
film.

If the complex angle O_ is written as

sinOI = qi exp(brs), (131

the generalized Snell's law applied at the interface
between the nonabsorbing (l - 1)th medium and ab-
sorbing lth medium is given by

N, sinO_ = (n: + ik!)q_ exp(i-r!) = n___ sinO,_p (14)

The right-hand side of Eq. (I4) is real, thus

n_q t cos'Y, - le:q I sin'r! = n,_ I sinO!_ 1, (15)

nrqt sin% + k,qt cos'ft = O. (16)

From Eqs. (15) and (16) it follows that qt and Vl are
given by

nl- IsinO,_ 1
q_ __ (17)

v_i + kf

- 1 tl f
(18)

If kt = 0, then

m-_ sinO,__
q/ =

rh
(19)

_,, = O, (20)

and the generalized Snell's law [Eq. (14)] should re-
duce to the well-known law of refraction.

The reflection and transmission coefficients are

complex numbers of the form

r = }rt exp(i¢,), (21)

t = Itl exp(i¢,), (22)

where o_ and ¢_ represent the phase changes on reflec-
tion and transmission, respectively. The phase
change of reflected light Or is referred to the plane
bou .=tary between the semi-infinite incident medium
ano he front surface of the muttilayer, while the phase
ch_ of transmitted light 0! is referred to the plane
bou. iry between the multilayer and the semi-infi-
nite medium of the substrate. Reflectance R, trans-

mittance iv, and absorptance A of the multilayers are
given by

R = rr*, (23)
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.4 = I-_R + T).

_24)

25)

III. Tuned Mullilayem

Multilayers formed by high and low index materials
alternating throughout the stack are, by analogy with
electrical networks, called tuned filters or tuned multi-

layers. Because of their importance in the design of
VUV coatings presented in this paper, we investigate
the properties of tuned multilayers with absorbing
film materials in more detail here.

Consider the multilayer (HL)v with a total number
of films P = 2p. Let the angle of incidence be zero, i.e.,
00 = 0. By denoting the angle within the low index
material as eL and the angle within the high index
material as OH we may write

OH = _)L = 0. (26)

Thus, phase thickness 6H and 5L are now given by

2w

5 H = _,_ _n H + ikH)d H (27)

for the high index material, and for the low index
material

27r

5L = _ !n L + ihL)dl. (28}

If the optical thicknesses of both the H and L materi-
als are quarterwave relative to the same reference
wavelength X,, then

X,
nLd L = -- , (29)

4

nHd H = _.
4

Phase thicknesses 5H and _t. are given by

-"' (,+i
,sl.= _ x++\

Further. with

kH
_H=--.

n H

kl,

Eqs. (311 and (32) can be written as

,v h,

5H =----(, +iKH),
2 k,)

/ -i sinha H

MH = /_iN,4 coshaH

/ -i sinhal.

ML = _\iN t cosha_

where

W_H

t_H = -- -- = -- KH_
2 n H 2

, _T hl 'Tic

L_L= ,)_= "T L"

t_ coshau\

NH / '

;-t sinha H

i
-- cosha L \

NI' ) '-I sinha 5

(371

(38)

(39)

(40)

At this point, we shall assume (just for theoretical
consideration of the tuned multilayers with absorbing
films and not for exact calculation) that the hyperbolic
functions in Eqs. (37) and (38) may be approximated

by their values at the origin, i.e., sinhx --_ 0 and coshx
--* 1 for x -+ 0. Matrices MH and ML within this

approximation and for M = X_ can be written as

i

(0)M_ = -_H , (41)

iN H 0

i

/°ML = , (421

iNL

giving matrix M1 of the basic sequence (HL):

Mr = MnML = H (431
_NH •

The characteristic matrix of multilayer (HL)v is

(301 then given by

Mp =(MHML )P =[\ NH ] _N H ;, •

,3,) L o (7,

(32)

(33)

(34)

(35)

=_-X.

5L 2+ X<-'_(1 + i"t.). (36)

The matrices of such quarterwave films at X_ = X,_
become

OV P_ _J,_LITY

(44)

From Eq. (3) the amplitude reflection coefficient fol-
lows as

,
n° \NL/ (45)

r

n, /NHV p

The ratio of optical constants NH and NL carl be
written as

N H n H (1+ iK H) n H
-- -- (G2 + b2) 12 exp(i3), (46)

N L n L (1 + iKL) nt.

where

1 + *H_[+ (47)
a =--

l+Ki.

*H -- KI,
b = --- (48)

I+K_
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= tan ( . _49i
i

Thus. I.VH/Ni)_ can be written as

NH/; =F'p'exp[tg,p,], ,501
•\'t /

where

F,p, ('_"1;'= -- qa: + be) ;_-', ,5t1
\ %/

.;Ipl = pJ. t521

Now, Eq. (45) for r becomes

t- (n-_ k(2p, expli¢ (2p),

r(p)- \ I)/ (53)

l+(_o)F(2p)exp[i¢(2P)]

giving for reflectance R(p) of the {HL)v multilayer
tuned at wavelength X, = X_:

J rl_

R(p) = \n,/ \n,,/ (54)

I + F:(2p) + 2 F(2p) cosCt2p)

Ifp = 0, i.e., if no films are present on the substrate,
Eq. (54) reduces to the well-known Fresnel formula for
reflectance at the boundary between two semi-infinite
media with indices no and n,:

/l 2

R(0) - . (55)

From Eq. (541 it follows that the reflectance of the
(HL),' stack will have maximum, values if, for l =
0,1,2 ....

£12p) = (!'+ ',t_, i56)

Thus, for { = n from Eqs. i471-(49), (51). (52),and (561
it follows that the maximum reflectance is achieved if

"rrtan-- (_H--_I'_] -' (571

P=v"=i L k t+ ,,,,./j "

Equation (541 indicates that R(p,3 = 1 if p satisfies
Eq. 157). This is caused by the high level of approxi-
mation at the beginning of our derivation. Equation
(57) is the final goal of this theoretical consideration
for determining the maximum useful number of layers
for achieving the highest possible reflectance with ab-

soroing materials.
From a certain number of (HL) pairs p_,, both the

reflectance and absorptance of the stack will remain
practically constant, adding to unity, and no signifi-
cant improvement of the stack's reflectance can be
achieved by adding new (HL) pairs, i.e.. for p >--Po:

R(p) + .41pl _ l. (58)

The transmittance of the stack will be equal to zero for

all pr:,ctical purposes.

The results of exact calculation of how reflectance

Rip) and absorptance A(p) depend on the number of
(HL} pairs p of muhilayers formed with BaF._,, LaF_,
and SiO__ as the high index materials and MgF2 as the
low index material are shown in Figs. 1, 2, and 3,
respectively. The optical film thicknesses of all the
films are quarterwave relative to wavelength X0 = X_ =
135 nm. At this wavelength the ratio _ for the SiO__
film is KH = 0.05759, and for the MgF2 _u -- 0.00025,

giving po = 13.7, i.e., Po --* 14, which agrees with the
exact calculation shown in Fig. 1. Since the extinction
coefficients of BaFe and LaF:_ are an order of magni-
tude lower than the extinction coefficient of SiO__,p0

attains higher values if these fluorides are used as the
high index material.

From the reflectance R(p) and absorptance A(p)
curves shown in Figs. 1-3, it follows that BaF2 has the

highest potential as the high index material for wave-
lengths close to 135 nm. At longer wavelengths, Xo >
150 rim, the extinction coefficients of LaFa and BaF2
become similar while the refractive index of LaF3 re-

mains higher)
The R(p) and A(p) curves shown in Figs. 4-6 are

calculated again for multilayers with BaF.,, LaFa, and
SiO2 as the high index materials but with optical thick-
nesses of

X.

nHd H = _-, (59)

nLd L = _-, (60)

where nL is the refractive index of MgF2, and Xo -- X_ =
I35 nm. This type of tuned multilayer stack is some-
times referred to as the third wave (TW) design, by
analogy with quarterwave (QW) stacks. The thick-
ness of the (absorbing) high index material is larger in
the QW than in the TW multilayers, thus one may
expect that the TW designs will have lower absorp-
tance and therefore higher reflectance. That this ex-

pectation is justified follows from comparison of the
R(p) and A(p} curves for the QW multilayers shown in
Figs. 1-3 and R(p) and A(p) curves for TW multilayers
shown in Figs. 4-6.

The maximum reflectance of the QW stack with
BaF._, is R = 85.4% {Fig. i), while the TW multilayer
with the same high index material has a maximum
reflectance ofR = 87.6% (Fig. 4). The largest relative
difference between the maximum reflectances of :he

TW and QW stacks is for a multilayer with SiO? as the
high index material. The maximum reflectance of the
QW stack is R = 60.9% (Fig. 3), while for the TW stack
R = 66.3% (Fig. 6).

The number P0 found for the quarterwave multi-

layers using Eq. (57) seems to be useful even for the
third wave stacks. It again represents the minimum
number of (HL) pairs P0 needed to obtain the maxi-
mum value of reflectance or zero transmittance.

A more rigorous treatment of absorbing multilayers
with the so-called potential transmittance and absorp-
tance is given by Knittl '_ and the original references
listed therein.
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IV. Narrowband Filters

A. Transmission Filters

1. Fabry-Perot Filters

Transmission or bandpass filters are frequently de-
signed using the basic structure of the Fabry-Perot
(F.P.) interferometer--the muitaayer in which one of
the layers (spacing layer or spacer_ is bounded by two
partial reflectors. The transmittance of such an inter-

ference filter is given by _,7

Tmax

T= (61)
I + Fsin:@ '

(62)
{1 - ,, RIR..,) 2 '

F = 4\_RIR_-

fl - _ R,R,J-' ' (63)

O_ + O,_,
,P = 5 - -- i64)

2

R i and R2 are the reflectances and T_ and T_ are the
transmittances of the partial reflectors bounding the
spacing layer, calculated with the spacer taken as the
incident medium (seen from inside the spacer). The
emerging medium for reflector Rj is air and for partial
reflector R2 it is the substrate. 5 is the phase thickness
of the spacing layer defined in Eq. (11), 0_ and 02 are
the phase changes [Eq. (17)] associated with reflec-
tions on partial reflectors R I and R__. The maxima of
transmission according to Eq. (61) are given by

_I, = _ - O = rnx, (65)

where

O,. + O,,

O = _, i66)

and the bandwidth (AX)h full width at half-maximum

(FWHM) is given by:

IAX}_ _,k,, ,T_ - -- i,\,_¢) (67)

of the ruth order filter (m = 1,2 .... }.
For BaF_, LaFa, and SiO_ the values of the extinction

coefficients are too high in the VUV'-' to be used as film

materials for the spacing layer. Thus, in all our de-
signs MgF_ was used as the film material of the spacer.
The possible designs of F.P. type interference filters
are then given by

air[H( LH)P2L( HL)PH]substrate, (68)

or

air[(LH)z2L( HL)V]substrate, (69)

where L denotes the quarterwave optical thickness of
the MgF2, H is the quarterwave optical thickness of
one of the high index materials (BaF2, LaF_, or SiO,,),
and the substrate is bulk MgFz. The optical thick-

nesses are quarterwave relative to the central pass
wavelength of the F.P. filter.

Reflectances R and R., and transmittances Y_ and 7"._,
appearing in the above basic equations for the F.P.
filter are seen from inside the spacing layer. The Rl
and Ti are calculated for the boundary between the
spacing layer and one side of the F.P. filter including
the incident medium (air), while R2 and T_ are calcu-
lated for the boundary between the spacing layer and
the other side of the F.P. filter including the substrate.

The partial reflectors in both designs [(68) and (69)]
are (HL}P QW tuned multilayers with an additional

outer H layer in design (69).
The dependences of reflectances R_ and R__ on the

number of (HL) pairs p for BaFo, LaF_, and SiO2 are

shown in Figs. 7, 8, and 9, respectively. The maximum
values of transmittance Tm_ calculated using Eq. (62)
and the corresponding bandwidths (AX)b calculated
according to Eq. (67) for the first-order filter (m = 1)
are plotted vs p in Figs. 10-12 (for the high index
materials listed above). The differentiation of the

function

_()%_ = h_o(h_) '70)

in Eq. (67) was done numerically according to

d _t)_1 = - _72)

with AA -< ;_oX 10 -6 and the central pass wavelength of
the F.P. filter X0 = 135 nm.

From Fig. 10 it follows that the F.P. filter centered at
)_o = 135 nm should have Tm,,> 30% and (Ako)b < 10
am for H = BaF_ and p = 6. The design of the F.P.
filter becomes

air[(LH)_2L( HL)_]substrate, (73)

where the substrate is bulk MgF_,.
The experimentally obtained and theoretically cal-

culated spectral performance of such a filter is shown
in Fig. 13. The theoretical curve is not corrected for
loss due to MgF_ substrate absorption and back side
reflection (23% at X0 = 135 nm). The experimentally
obtained bandwidth is smaller than the one predicted

in Fig. 10, This can be explained by much higher
values of the extinction coefficient of BaF_ for wave-

lengths below 131 nm than for )_0 >-- 135 nm.
To improve the transmittance at central wavelength

M = 135 nm, a F.P. filter with two spacing layers may

be designed such as

air[(LHP2LiHL),_H2L(HL)a]substrate. (74)

where H and L represent the quarterwave optical
thicknesses of BaF__ and MgF3 respectively, and the

substrate is bulk MgF2. Tl-._ calculated and experi-
mentally obtained transmit_ances of this filter are
shown in Fig. 14. The effects of the MgF_. substrate
absorption and back side reflection are not taken into
account in the theoretical curve. The bandwidth of

the filter is again smaller than that calculated using a
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tbrmula similar to Eq. (67) for the bandwidth of the

F.P. filter with two spacing layers. '_ This can also be

attributed to the much higher k values of BaF2 films

for shorter wavelengths; k = 0.1 at X = 130 nm com-

pared with k = 0.026 at ,\ = 135 nm.

2. Tuned Stack

The fact that the extinction coefficient of a BaF2

film is almost four times larger at 130 nm than at 135

nm can be used for the design of a narrowband filter

centered at 135 nm. The design of such a filter is a

simple QW tuned stack with the high reflection zone

centered at 140 nm. The theoretical and experimental

spectral curves of the twenty-five-layer QW tuned fil-

ter are shown in Fig. 15. The interference effects are

predominant in the wavelength region above 135 nm,

while the absorption of BaF2 dominates for wave-

lengths shorter than 135 nm. The peak value of the

transmittance is Tmax = 39% at ko = 135 nm. The

theoretical curve in Fig. 15 is not corrected for loss due

4300 APPLIED OPTICS / Vol. 29. No. 28 / 1 October 1990

to MgF: substrate absorption and back side reflection.

The filter shown in Fig. 15, which combines absorp-

tion effects of the film material (BaF_>) to reject shorter

wavelengths and interference effects to reject longer

wavelengths relative to the central wavelength Xo =

135 nm, has a higher peak transmittance and at the

same time provides better rejection of the longer wave-

lengths. Another possible design of such a filter cen-

tered at 141 nm with a twenty-five-layer TW tuned

multilayer is shown in Fig. 16. The rapidly changing

extinction coefficient k of SiO,_ film within 135 nm < X

_< 145 nm is utilized.

All these filters suffer from pass windows at longer

wavelengths. An edge filter is needed which will reject

longer wavelengths. When the edge filter is combined
with the narrowband transmission filter, the combina-

tion should provide useful transmittance at X0. For

the filters centered at 135 nm, the edge filter might be

required (for some applications) to reject longer wave-

lengths up to at least 170 nm to better than 95%, and at
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the same time provide T >_ 50% at h{_= 135 nm. The
basic design of such a filter is again a tuned multilayer
with either QW or TW optical thicknesses. The QW
stacks generally have a wider high reflection zone than
TW stacks. The width of the high reflection zone of a

QW multilayer with nonabsorbing film materials is
given by _

4x_ (nil-nL_
(A_')HR = 7- sin-I \n H + nL ] , (75)

where nH and nL are the refractive indices of the high
and low index materials, respectively. If the presence

of absorption in the films affects only the maximum
value of the reflectance but not the width of the high
reflection zone, (AX)HR = 21.6 nm for H = LaF:{ and L
= MgF_ at ,\. = t60 nm. Because of the transmission
requirements at 135 nm, the idea of coupling QW or
TW muttilayers centered at several wavelengths with-
in the wavelength interval from t40 to 170 nm cannot
be used. Hence. the edge filter which would provide
the required transmission at 135-nm wavelength and
at the same time reject longer wavelengths up to 170
nm cannot be designed with the dielectrics known to
us. The twenty-five layer QW stack shown in Fig. 17

justifies calculations done using Eq. (75); the high
reflection zone of the measured spectral curve (_,\)H,R.

< 15 nm.

B. Reflection Filters

Designs of the dielectric cut-on filters which would
have a useful range of transmittance (T >_ 50%) for
wavelengths below 145 nm and at the same time reject
the longer wavelengths up to 230 nm better than 95%
do not seem to be feasible at the moment. Another

possibility in solving this problem is to try to design a
reflection filter at an incident angle of, say, 45 °, which
would reject a narrow spectral band with a reflectance
of 50% or more at the desired wavelength. If this type
of filter is then combined with one of the previously

OF PO0_ @J&Lff_'

presented transmission filters, the combination could
provide excellent rejection for the shorter wave-
lengths, high peak transmittance, and reasonably good
blocking of the longer wavelengths.

The design of the reflection filter is once again a QE
or TW multilayer with the optical thicknesses of the
films corrected for oblique incidence. A first-order

QW stack generally has a wider high reflection zone
and suffers from high side reflection ripples. The

ripples can be reduced by introducing films with opti-
cal thicknesses H'/2 or L'/2 (primes denote correction

of the quarterwave optical thickness for the oblique
incidence) at the first and last positions in the stack.

The width of the high reflection zone decreases if the
order of the QW multilayer is increased. The increase
of the order by 1 means a change in the optical thick-
ness of one of the film materials from X0/4 to 3Xo/4.

Obviously, in the VUV range MgF, is a material whose
optical thickness can be increased from L' to 3L' with-
out affecting the maximum value of reflectance possi-
ble with a first-order QW stack.

The experimental and theoretical spectral curves of
the second-order QW stack at an angle of incidence 0o
= 45 ° are shown in Fig. 18. The design of the filter is

given by

3L'
air[_, H'3L')IIH' _-lsubstrate. [76)

where H' = BaF_ L' = MgF2, _,_ = 135 nm, and primes
denote the correction for oblique incidence. The

width of the high reflection zone (-_X)HR. --<5 nm and
the reflectance at the central wavelength is 60%.

The measured overall transmittance of the filter

presented in Fig. 15 combined with the reflection filter
(Fig. 18} is shown in Fig. 19. The central wavelength
of this filter is Xo = 135 nm, the peak value of the
transmittance is Tm_ = 24%, and the bandwidth (AX)_
= 4 nm. The average transmittance for the longer
wavelengths is <3%, while for wavelengths shorter
than 130 nm the transmittance is <0.1%. A cone angle

1October 1990 / Vol. 29, No. 28 / APPLIEDOPTICS 4301
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of incident light of +5 ° causes the bandwidth to in-
crease up to 7 nm.

The overall transmittance of the filter shown in Fig.

16 combined with the QW multilayer reflector cen-
teredat ,l nm is shown in Fig. 20. The bandwidth of
the filter is 3.5 nm and peak transmittance is 25%.
The film materials used for the reflectton filter are

LaF_ and MgF2.

V. Summary

The idea of utilizing the natural absorption of one of
the film materials to limit the transmission at shorter

wavelengths and a combination of this filter with a
reflection filter to control the transmission at the long
wavelength end of the bandpass constitutes the basis
of our design of narrowband filters. The two filters
that we designed and evaluated to demonstrate the
approach have bandwidths smaller than 5 nm and
peak transmittances higher than 25% for collimated
incident light. The average transmittance in the re-
gion of longer wavelengths is <3% while the transmit-
tance m the region of shorter wavelength is <0.1%.

The values of the extinction coefficients of BaF2 and
LaF !ms are much smaller at longer wavelengths
thaL _ 135 nm. ',:hich makes the design of a narrow-
band high reflectur much easier. Other film materials
such as Al,,Oa and HfO,_, or suitable bulk materials
(substrates) such as BaF._,, fused silica, and Al,_,O3 can
be _d to reject .iifferent shorter wavelength ranges.
Wh_=, such materials are combined with reflection

multilayers, narrowband filters with bandwidths
smaller than 5 nm and overall transmittances higher
than 25% can be made for the whole VUV region from
120 to 230 nm.
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The discrepancies between theory and experiment

may be partially explained by the random errors which
occur in the film thickness monitoring during deposi-
tion. There are certainly some other effects to consid-
er such as scattering, film thickness nonuniformities,

and possible film inhomogeneities. Since the discrep-
ancy between theory and experiment varied for differ-
ent designs, it seems that these effects do not affect
each of them equally.
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Auroral Modefing of the 3371 ,& Emission Rate:

Dependence on Characteristic Electron Energy
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We have developed an efficient two-stream auroral electron model to study the deposition of
auroral energy and the dependence of auroral emission rates on characteristic energy. This model
incorporates the concept of average energy loss to reduce the computation time. Our simple two-
stream model produces integrated emission rates that are in excellent agreement with the much
more complex mtdtistream model of Stricldnnd et al. (1983) but disagrees with a recent study
by Rees and Ltunmerzheim {1989) that indicates that the N2 second positive emission rate is a
strongly decreasing function of the characteristic energy of the precipitating flux. Our calculations
reveal that a 10 keV electron will undergo approximately 160 ionizing collisions with an average
energy loss per collision of 62 eV before thermalizing. The secondary electrons are created with
an average energy of 42 eV. When all processes including the backscattcred escape fluxes are
taken into account, the average energy loss per electron-ion pair is 35 eV in good agreement with
laboratory results.

I, INTRODUCTION

There is currently renewed interest in the use of au-
roral optical emission rates to deduce the characteris-

tics of the precipitating particle fluxes, and ultimately,
the global auroral energy input to the Earth's upper
atmosphere, huages from the Dynamics Explorer satel-
lite have been used by Rees et al. [1988} to calculate
the energetic electron flux and its characteristic energy.
Imaging instruments planned for the ISTP mission will
monitor key UV emissions on a global scale for the ex-
press purpose of determining the global energy input.

Early work in determining auroral particle character-
istics from emissions concentrated on the use of the ra-

tios of atomic oxygen emission rates (6300 ./_, 5577 _) to

molecular nitrogen ion emission rates (3914 /_, 4278 _)
to deduce the incident auroral spectrum [Rees and
Luckev, 1974; Vallance Jones, 1975; Shepherd e_ al.,
1980; Strtckland et al., 1983J. The higher energy auroral
electrons penetrate deeper into the thermosphere where
the relative proportion of atomic oxygen is smaller.
Thus the ratio of atomic to molecular emission rates de-

creases with increasing electron energy. Unfortunately,
chemical processes play an important role in the atomic
oxygen emissions and it is difficult to separate tile ef-
fects caused by the characteristics of the auroral energy
flux from the effects caused by changes in the atmo-
spheric composition. Therefore, it would be useful to
find an emission rate ratio that is sensitive to the au-

roral characteristics but which is not complicated by
chemical factors.

Copyright 1990 by the American Geophysical Union.

Paper number 90JA00233.
0148-0227/90/90JA-00233505.00

Recently, Rees and Lummerzheim [1989] suggested
that the ratio of the second positive to first negative
emission rates could be used to determine the charac-

teristic energy of the auroral electron flux. Using an
auroral electron model developed by Lumme*'zheim e_

al. [1989], Rees and Lummerzheim [1989] found that
the N._ second positive (3371 _. ) emission rate de-

creases substantially witl, increasing characteristic en-
ergy of the auroral electrons while the N+ eufission
rates are ahuost constant. This ratio would be an at-

tractive alternative to those used previously because it

would be independent of atmospheric composition and
both enfissions are prompt, thus elinlinating chemical
effects. Unfortunately, the calculations of Rees and
Lummerzheim (1989] are in conflict with the earlier cal-
culations by Daniell and Slrickland [1986] who found
that the 3371 A emission rate was nearly independent

of the characteristic energy.
Tile experimental evidence also seems to be in con-

flict. Rees and Lummerzheim [19891 present data from
high flying aircraft that support their theoretical calcu-
lations. On the other hand, Solomon [1989] presented
data from the visible airglow instrument on the At-
mosphere Explorer C satellite showing that the ratio
of the N._ 3371 A to N + 4278 A emission rates has

only a small dependence on the characteristic energy,
which can be accounted for by contamination of the
3371 ]_ second positive emission by the Vegard-Kaplan
(0-9) baud. The VAE data support the earlier calcula-
tions of Daniell and Sfrickland [1986] and S*rickland et
al. [1983]. Solomon was able to reproduce the observed
ratios using his own two-stream auroral electron depo-
sition code. We note that the experimental data pre-

sented by Solomon [1989! for the ratio of N, 3371 ./k to

N_ 4278 A is in excellent agreement with the ratio of

N, 3371 _ to N + 3914 _ that was measured on a 1974
rocket flight by Sharp et al. [1979].
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The source of the discrepancy between the models is
difficult to understand. Both Rees and Lummerzheim

[1989] and Strickland et aL [1983] use relatively com-
plete multi-streanl models. The model used by Solomon
[1989! is a simpler two-stream model and his calcula-

tio;s are in agreement with the ,alculations of Sfrick-

lana et al. [1983] and Danieli ,.d Sf::kland [19861
which show little variation in the 3371 ._. to
3914 A emission rate ratio as a function of characteristic

energy. In this paper we present calculations of a num-
ber of important emission rates obtained from a two-

stream auroral electron model that we have developed.
The calculated emission rates for the 3371 ._. emission
rate and a number of other emission rates are in accord

with the earliercalculationsof Siricklandet al. [1983]

and Daniell and Strickland [1986] for the dependence
on characteristic energy of the precipitating flux. How-
ever, mainly due to the use of a revised cross section,
our atomic oxygen 1356 A emission rate is a factor
of 2.5 lower titan that calculated by S_'ickland et al.
I1983!.

2. MODEL

2.1. General Principles

The model that we have developed is based on the
two-stream photoelectron flux model of Nagy and Banks
[1970] that was subsequently extended to 500 eV and

combined with a continuous energy loss model to calcu-
late auroral electron fluxes by Banks et al. [1974]. Al-
though both our model and the model of Solomon et al.

[1988} have origins in the Nagy and Banks [1970] two-
stream model, they have evolved substantially along en-
tirely separate paths. Our model owes much to our ear-

lier work with the ionospheric photoelectron flux
[Richards and Tort, 1984; 1985a].

By incorporating a variable energy grid developed by
Swar_z [19851 and a variable altitude grid we have been
able to extend the two-stream model up to energies
greater than 20 keV. This has eliminated problems en-
countered by Banks et al. [1974] in matching the COla-
tinuous slowing down approach that they used above
500 eV with the two-stream approach they used below

500 eV. The continuously variable altitude grid allows
altitude steps of less than a kilometer below 90 km up
to 50 km at 500 km with a manageable number of grid
points.

Further economy in computer tilne is achieved by in-
troducing the concept of an average energy loss for an
excitation or an ionization event. This concept allows
the use of only the total excitation and ionization cross
sections instead of treating each partial excitation or
ionization process separately. That is, the excitation

(or iouization) is treated as arising from a single aver-
age state for each thermospheric species. The average
energy loss depends on the species and also on the en-
ergy of the primary electron. The calculation of the
emission rates then becomes a two stage process with
just the total cross sections being needed to calculate
the electron flux as a function of energy and altitude
in the first stage. In the second stage, the partial cross
sections are folded with the electron fluxes to produce
the excitation rates.

For each of the 3 main neutral atmospheric compo-
nents (O, O__, N._) the total cross sections are made up
of partial cross sections from the numerous electronic
states of each species each corresponding to a different
energy state of the atom or molecule. In addition, each
electronic state of a molecule can be created in any one
of a large number of vibrational energy states. A com-
plete evaluation of the electron flux would require the
separate accounting of all these energy losses which we
have replaced with a single, energy dependent average
energy loss for the excitation and ionization of each of
the three main thermospheric species O, 02, and N2.

The treatment of excitation processes is relatively
straightforward; the average energy loss is specified and
the electrons deposited in the correct lower energy bin.
However, ionizing collisions are more complex because

of the production of secondary electrons which may be
produced with energies ranging front 0 up to Ev - li
where E r, is the energy of the primary electron and li is
the ionization potential of the state i being produced.
We follow the approach of Banks et al. [19741 and des-
ignate the higher energy electron as the degraded pri-
mary and the lower energy electron as the secondary.
This means that the maximum secondary energy is then
(E v - 1,)/2 as is the minimum energy of the degraded

primary. We treat ionization as arising from a single
state with an average ionization potential I and we use
the measured secondary electron distributions of Opal
et al. [1971] to determine the average energy E, of the
secondary electrons produced by an electron of energy
E I, (we note that the measured secondary electron dis-
tributions are in fact a sum of the contributions from

all the ionization states). The average energi of the
degraded primaries is then E r - I - E,. A separate
ionization potential could be used for each species but
a further improvement in computational efficiency can
be made by observing that the ionization potentials and
secondary electron distributions are similar enough that
a single ionization potential and secondary electron dis-
tribution for all 3 major species will suffice. Since N2 is
the most important species in aurora, we adopt the N2
ionization characteristics. At each electron energy, the
total uumber of secondary electrons from O, O.,, and N_
is calculated and then they are distributed according to
the measured secondary electron distributions of Opal
et al. [1971]. The model has been found to conserve
energy to better than 5% for characteristic energies in
the range .1 to 20 keV.

2.2. Average Ionization Potentials

The calculation of the average ionization potential

follows froln the knowledge of the ionization potentials
and the partial cross sections for the various ionization
states of each of the thermospheric species. For exam-
pie, N_. ionization results in the formation of the X, A,
and B states of N_ and also N + which arises from sev-
eral higher lying states that dissociate. The ionization
potentials for the X, A, and B states are 15.6, 16.8, and
18.8 eV respectively while the bulk of the N + probably

arises from a state with a threshold near 37 eV [Erd-
man and Zipf, 1986]. The actual energy lost by the
primary electrons may be greater than threshold due
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to the ions being vibrationaily excited and because, in
the case of dissociative ionization, the atomic fragments

are observed to carry substantial kinetic energy [Lil-
_ana and Sto, dale, 1975!. To complete the calculation
of the average ionization energy for N2 we also need
the ratios of the partk., cross sections. We examine
tile high energy case first where the proportions of the
various partial cross sections are practically constant

and the cai-,dation is straightforward. Above approxi-
mately 100 eV, dissociation accounts for ---20% [Rapp et
al., 1965] and the B state _I0% [Borst and Zip/, 1970]
of the total cross section. According to Cartwr:ght et
al. [1975], the X and A state cross sections are ap-
proximately equal (that is, _35%). Using these per-
*stages for the partial cross sections and ionization

_otentials given above, the average ionization potential
is ,,-20 eV for high energy electron impact ionization of
N2. We now examine the low energy average energy loss
per collision. The average ionization potential begins
at 15.6 eV at threshold when the X state is produced
but increases to _16 eV above 17 eV when the A stat'e

threshold is reached. There is only a marginal increase
when the B state threshold is reached at 18.8 eV because
it accounts for less than 10% of the total cross section

at these energies and the energy loss of 18.8 eV is only
marginally larger than 16.8 eV. After about 30 eV dis-
sociative ionization becomes important. The ionization

potential then rises steadily to approximately 19 eV at

50 eV before leveling off toward 20 eV at high energies.
A similar calculation yields an average ionization po-

tential of approximately 18 eV for both O and 02, at
high energies. Because N,, is the dominant constituent
"rod all three ionization potentials are similar, we use
ae average N., ionir.ation potential for all three species.

This simplifies the calculation and reduces the compu-
tation time without introducing significant errors. The
adopted ionization and excitation energy losses as a
function of primary electron energy are shown in Fig-
ure 1. This figure also shows tile average energy of the
secondary electrons as a function of the primary en-
ergy. Below 25 eV the ionization potential is assumed
to be 16 eV while above 25 eV it is represented by
lO(1 + I1 - I_/E) '/_') ev.

2.3. Average Secondary Electron Energy

To obtain the secondary electron distribution we

adopt the Banks et al. [1974] parameterization of the
Opal et al. [1971] measured distributions. The proba-
bility of a secondary electron of energy E. is given by

A
P,(E'. ) - (1)

1 + (E./E) -_

where A = [(_7 arctan(E,,,/_')- 1] is a normalization fac-
tor that ensures a total probability of unity when iu-
tegrated over all secondary energies from 0 to E,,, --

(E,v - I)/2 and 1_=14 is an empirical normalization fac-
tor. The product of//7, and Equation 1 integrated over

energy yields the average secondary electron energy for
a primary energy E r, as

Z,,_ = 0.5 A E'_ In (1 + (E,/E) 2) (2)

>.
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Fig. 1. Average energy losses per collision and average secondary

electron energies (E,,.) as a fmaction of primary electron energy.

The twerage ionization potential is h_belled I and the total en-

ergy loss per ionization is labelled I+E .... The average excitation

potentials are indicated by nn asterisk and the 02 excitation po-

tential is set equal to that of N2. Note that below 5 eV, the N_

excitation potential is set at 1 eV.

The dependence of the average secondary energy on
the primary energy is shown in Figure 1 along with
the average total energy loss of the primary (I + E,,_).
The average energy of the secondaries increases steadily
front 0 near threshold to 52 eV for 10 keV primary elec-

trons. The total energy loss per ionizing collision for
10 keV electrons is 72 eV, when the 20 eV ionization

potential is included. The average energy of the secon-
daries is approximately equal to the ionization energy
for 200 eV primary electrons.

A quantity of interest, in relation to energy degra-
dation of high energy electrons, is the average energy
required to produce each electron-ion pair. The aver-

age energy required to produce e _ch electron-ion pair
is a quantity that is independent of electron energy
and is also remarkably independent of the species be-

ing ionized. The experimental value for the energy lost
per electron-ion pair for high energy electron is 35 eV
[Valentine and Curran, 1958]. This energy loss per
electron-ion pair was used in early auroral electron de-

position codes [Rees, 1963: Rees et al. 1969; Rees and
Jones, 1973].

An approximate value for the energy loss per electron-

ion pair can be deduced by using the average energy
losses depicted in Figure 1, assuming that for electron

energies above approximately 100 eV the energy lost
to excitation coUisions is small and can be neglected.

With this assumption, it requires about 160 ionizing
collisions to thermalize a single 10 keV electron. Thus,

on the average, 62 eV is lost in the creation of each of
the 160 electron-ion pairs. Since the ionization energy
is 20 eV for electron energies above 100 eV, the average

energy of the secondaries is ---42 eV. This means that
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the 160 secondary electrons are sufficiently energetic to

create one more electron-ion pair each. if all secon-

daries created all additional electron-ion pair, the total

number of pairs would be 320 and the average energy

per electron-ion pair would decrease front 62 to 31 eV.

In reality this does not happen because, below 100 eV,

excitation processes begin to compete effectively with

the ionization processes for the available electron en-

ergy and the number of additional electron-ion pairs

produced by the secondary electrons would be less than

160. In fact, for a 42 eV electron the total ionization

and excitation cross sections are approximately equal

attd only half the secondaries could be expected to pro-

duce all additional electron-ion pair. This agrees with

our previous calculations that show that a third rather

than a half, of the total ionization is created by de-

graded primaries attd secondaries with energies below

I00 eV [Richard, and Tort, 1985b]. Titus the original
I0 keV electron would ultimately produce about 240

electron ion pairs and yield an average energy loss per

electron-ion pair of 42 eV. This is only an estimate of

the energy lost per electron-ion pair and a more detailed

calculation including transport is required to determine

the actual value. It was pointed out by Banks ef al.

[1971] that escaping backscattered electrons will be lost

to the system and act to increase the energy loss per

electron-ion pair.

We have sunuued the total ion production rate in our

full auroral calculation, and we obtain all average en-

ergy loss per electron-ion pair of 35 eV, which is smaller

than our estimate but in agreement with the laboratory

measured value. A slightly higher value of 37 eV was

obtained by Foz and Victor I1988] using their discrete

local energy loss method. The reason that the energy

lost per electron-ion pair is not a strong function of

electron energy has to do with tile relationship between

the average secondary electron energy and the primary

electron energy. Electrons with higher initial energies

suffer a greater energy loss per collision as they degrade

but they produce higher energy secondaries which are

more likely to generate secondary ionization. For ex-

atuple, a 1 keV electron will undergo only 22 ionizing

collisions with an average energy loss of 45 eV before

it thermalizes. Thus, the secondary electrons have an

average energy of only 25 eV compared to the 42 eV for

the 10 keV electrons and are much less likely to produce

additional ions.

2.4. Cross Sections

In a number of previous studies of the ionospheric

photoelectron flux we have chosen measured total exci-

tation cross sections that produce good agreement be-

tween theory and the photoelectron spectrometer mea-

surements from the AE-E satellite [Lee et at., 1980]. At

low altitudes where N2 is the dominant species, the to-

tal cross section obtained from electron mobility studies

by Pitchford and Phelps [1982) was found to be com-

patible with tile PES measurements. At high altitudes

where atomic oxygen is the dominant species, the emis-

sion cross sections measured by Zipf and co-workers pro-

duced good agreement between theory and PES mea-

surements. These total cross sections for energies be-

low 100 eV have been published by Richards and Tort

[1988]. Basically the same cross sections have been used
ill this study but they have been reparameterited to ex-

tend them to higher energies.

Above 100 eV, the excitation cross sections decay

rapidly with increasing energy and ate much less im-

portant than the ionization cross sections both because

they are smaller and because the energy loss per colli-
sion is smaller. The total ionization cross sections are

better established than the total excitation cross sec-

tions although there are some differences [Kicker and

Dunn, 1966]. We have adopted the N2 and O2 total
ionization cross sections of Rapp and Englander.Golden

I1965] which have also been used by most other mod-

elers. Tlle total ionization cross section for O is from

Brook e_ al. [1978]. The elastic cross sections are very

important because of their role in inhibiting transport.
We have used the elastic cross sections of Solomon ef

al. [19881 and also their elastic backscatter coefficients.
The total cross sections used in our auroral model are

shown in Figure 2. Our N2 total excitation cross section

is comparable to that of Solomon et at. [1988] below

25 eV but is smaller at higher energies. The differences

at high energies have little effect on the calculated fluxes
because the excitation cross section is smaller than the

ionization cross section. However, differences in cross

sections below 30 eV produce comparable differences in

fluxes. The N2 total excitation cross section of Sfr_ck-

land et aL [1983] is ahnost a factor of two larger than

ours at all energies and their fluxes would be a fac-

tor of two lower below 30 eV, at least below 200 km

where N., is the dominant species. The cross sections

of Solomon e_ al. [1988} and Sfrickland e_ al. [1983]

were obtained by summing the partial cross sections

and there is the possibility of double counting some

cross sections: for example, those that lead to dissocia-

tion. Moreover, S_rickland et aI. [1983} included large

I0 "14 ........ _ ........ _ ........ t ........

I0" is
g
E

(2_
i0 ""t

0

10ol7

i0-11 I

I0 o

t, r ,L,,,,_ t | tt,t.t , • t tt..,l , i _ t.la,

K) I 10 2 I0 5 104

ENERGY (eV)

Fig. 2. Total elastic, excitation, and ionization cross sections em-

ployed in the model. The iomzt_tion cross sectiorts are indicated

by a plus while the excitation cross sections are indicated by an

asterisk.
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Rydberg cross sections from Green and S_olarski [1972]

which have been revised sharply downward by Porter

et al. I1976]. There is now good agreement between

tile total cross section of Pilchford and Phelps [1982)

and the sum of the partial excitation cross sections of

Car_wmght et al. [1977a, b) as revised by Trajmar et al.

[1983], below 20 eV. Above 20 eV, the ionization cross

section becomes an increasingly important component

of tile total inelastic cross section and it is not easy to

compare the two cross sections.

The total atomic oxygen excitation cross section em-

ployed by Solomon et al. [1988] is a factor of 2 larger

than ours above 15 eV and will produce a similar dif-

ference in flux above 250 km where O is the dominant

species but the atomic oxygen cross section has little

effect on the integrated emission rates. Our atomic oxy-

gen excitation cross section was obtained by sumlning

the measured emission cross sections for 1304, 1356,

and 1027 ,_. [Zipf and Erdman, 1985}, tile 989 cross

section from Gulczcek and Doemng i1988], and the the-

oretical 1D and IS from Henry et al. [1969]. hnpllcit in

this procedure is the assumption that the higher lying

triplet and quintet states are included ill the 1304 and

1356 emission cross sections via cascade. We have left

out some theoretical Rydberg cross sections proposed

by Jackman et al. [1977] and some minor states that

radiate directly to the ground state but for which there

is no experimental data. Thus, our cross section must

be regarded as a lower limit.

Figure 3 shows the excitation cross sections for the

second positive (C3r,,) and Lyman-Birge-Hopfield

(alrr,I) systems of N._. Also shown is the cross section

used for calculation of the 0(5S) 1356/_ emission rate.

We obtained this cross section by reducing the measured

cross section of Stone and Zipf [1974} by the factor 3.1

which is the same factor that the 1304 ./k emission cross

section of S_one and Zipf[1974] was reduced by Zipf and

Erdman (1985]. The (C3_,,) cross section was obtained

iw
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Fig. 3. Cross sections for the three excited states giving rise to

the emissions studied in this paper.

by multiplying the 3371 A cross section of Imami and

Borst i1974! by 4 and the (air,j) cross section is from

Ajello and Shemansky [1985].

We have examined tile sensitivity of the emission rate

ratios to cross sections and this will be discussed later.

In all these calculations we have used the 1 erg cm-'_s -1

Gaussian incident flux distribution, and the neutral at-

mosphere employed by Strickland et al. [19831.

3. RESULTS

3.1. Comparison With Previous Work

We have calculated the N,. 3371/_ , N + 3914/_. , N +

4278/_ , O 1356 _ , and several N._ LBH band emission

rates as a function of energy and these are shown in

Figure 4. This figure shows that both the 337I A. and

3914 _. emission rates are independent of the char-

acteristic energy of the precipitating flux for energies
above 2 keV in agreement with the results of Strickland

et at. II983] and Danietl and S_rickland [1986]. Not

only is the shape ill good agreement but, except for tile

1356 ill emission rates, the magnitudes are also in good

agreement. Although the shape of the 1356/_ curve is

iu good agreement with that of Strickland et al. [1983],

tile magnitude is a factor of 2.5 lower owing to the use

of the revised cross section of Zipf and Erdman [1985].

3914 t

Fig. 4. Calculated emission rates as a function of the characteris-

tic energy for a Gaussian energy distribution with a total incident

energy flux of i erg cm -2 s -l . When differences in cross sections

are taken into account, there is excellent agreement with the cal-

culatiozLs in Figure 8 of Strickland et al. (1983) and Figure 11 of

Dan_e/l and Strtckland (1986).

ENERGY (keV)

4jrj

•I F s3s, 

.OI
0 2 4 6 8 I0
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We have included 02 Schuman-Runge absorption which

affects both the 1356 A and the 1200-1600 A LBH

ballds when the characteristic energies are high and the

electrons penetrate to lower altitudes [Strickland et al.,

1983]. The ratios of the LBH bands are taken from

Ajello and Shemansky [1985].

Our calculated second positive to first negative emis-

sion rate ratios are within 20% of the measured val-

ues for tile N2 emissions. At 10 keV, our 3371 /k to

3914 _ ratio is 0.3 compared to 0.25 from Sharp et al.

[1979] and our 3371 A to 4278 ._. ratio is 0.98 compared

to 0.8 from Solomon [1989]. Solomon obtained better

agreement between his lnodel ratios and the measured

ratios but there is sufficient uncertainty in the input

parameters to account for the differences.

3.2. Sensitivity of Ratios

I - i " I " I • I • 1 " ! " l " I • ! •

TOTAL ABIORBEO

r ._

i _ BACI_CATTER

e e

.0!
0 I 2 3 4 5 6 7 8 9 IO

We have performed some parameter studies to char-

acterize the sensitivity of the ratio of the second positive

to first uegative integrated emission rates to possible

errors t,i the model inputs. Obviously, a reduction of

20o7o in the 3371 ._. emission rate cross section would

bring the calculated and measured values into excellent

agreement but a 30% increase in the N_ total excitation

cross section has a similar effect by decreasing the low

energy electron flux which is responsible for most of the
3371 A emission. Likewise, a 30% increase in the N2

total ionization cross section above 100 eV reduces the

ratio from 0.3 to 0.25 by increasing the 3914 ._. pro-

duct; u rate. The integrated ratio is not sensitive to

cha,,es of up to a factor of two in most other param-

eters including: the atomic and molecular oxygen in-

elastic cross sections, the O, O_, and N2 elastic cross

sections and backscatter coefficients, and the relative

concentrations of the species. We estimate a possible

error of 10% in our computed average excitation and

io,fization potentials but this has negligible effect on

our computed ratios.

ENERGY (koV)

Fig. 5. The inititd partitioning of the incident 1 erlg cm -2 s -1

energy flnx between ionisation, excitation, thermal electron heat-

ing, and bnekscntter as a function of chartteteristie energy. The

l_rgest proportion of the energy (_35%) goes in::tally into the

iomsntion potential of the N2+ while (_20%) goes into N_ excita-

tion. Only (_16%) is backscattered out of the thermosphere. O

is nn importnnt absorber of energy at the lowest energies while

O 2 becomes increasingly importeatt as the characteristic energy

_tcreases.

3.4. Electron Fluz Spectra

Downward moving fluxes at 120, 174, 223, and 326

km are shown in Figure 6 for a 5 keV incident Gaussian

flux with an el,ergy flux of 1 erg cm-2s -1. The incident

flux can be seen centered at 5 keV in Figure 6. At the

two highest altitudes, there is very little degradation
of this initial flux but the degradation is noticeable at

174 km and pronounced at 120 kin. Because there is so

3.3. Energy Budget

T!:, _ incident electron energy flux is initially parti-

tionect into a large number of excitation and ionization

processes before it finally emerges as heat for the , iler-

mosphere or is radiated into space. Figure 5 shows the

gross energy partition amongst ionizations, excitations,

thermai iectron heating and backscattered escape flux

as a function of characteristic energy. N_ ions capture

the greatest share of the available energy (35%). Exci-

tation of N2 is next with (20%) wiule only 15% is lost

througi_ he escaping backscattere,i flux. This escape

flux is ch smaller than the 45% obtained by Banks

et al. i "4}, possibly as a result of the use of different

cross see:ions and backscatter coefficients. Below 1 keV,

' uization and excitation of atomic oxygen absorption

e important energy sinks for the electron energy, but

they become small for high energy incident fluxes. Ab-

sorption in molecular oxygen shows the opposite trend,

becoming more important with the deeper penetration

of the higher energy fluxes. Thermal electrons capture

a greater proportion of the available energy, the lower

the characteristic el_ :gy.
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Fig. 6. Downward moving electron flux spectra at several alti-

tudes for n 5 keV Gaussian incident flux. The incident energy

flux is 1 erg cm -2 s -_ .
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little interaction with the thernlosphere for high energy
electrons at tile high altitudes, there are few degraded
primaries to fill in tile region between 300 eV and 5 keV.
However, at tile lowest altitudes this intermediate en-

ergy range is filled in. Conzparison of tile downward
fluxes ill Figure 6 with tile upward fluxes ill Figure 7

reveals that, below 225 kin, where transport is inhib-
ited, tile electron flux is isotropic for energies less than
300 eV. At 326 kin, tile upward (escape) flux is a factor

of 2 larger titan the downward flux at low energies and
orders of magnitude larger at intermediate energies.

4. CONCLUSIONS

We have developed an efficient two-stream auroral
electron model that incorporates the concept of aver-
age energy loss. This model produces integrated enfis-
sion rates that are in excellent agreement with the more
sophisticated multi-stream model of S_ricktand et aL

[1983! but is in disagreement with the model of Rees and
L ummerzhetm [19891 with regards to the energy depen-

dence of ,lie N_ 3371 A. second positive emission rate.
Our calculations give a value of 35 eV for the average
energy lost per electron-ion pair produced independent
of primary electron energy and we have explained this
behavior in terms of the variation in the energy of the
secondary electrons. We find that more than 30°70 of

the initial energy flux is stored initially as ionizatio,l
energy of N + while about 20% goes into excited states
of N_, while only I5% is backscattered out of the ther-
mosphere. All other processes are nfiuor except at low
incident energies where 20% of the energy is stored in
atomic oxygen ions.
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The Dependence of Modeled 0I 1356 and N-, Lyman Birge Hopfield

,Auroral Emissions on the Neutral ,Atmosphere

G. A. GERMANY AND M. R. TORR

Space 5_ ic,{ e L_tlJorator_. V,tSA Mar#lait Spa{e Flight Cetlter. ttunmvdle. Alabama

P. G. RICHARDS AND D. G. TORR

Untver_ttv (!t Alabama m Huntsvdle. Huntsville. Alabama

Images ot the enure auroral oval at carefully selected wavelengths contain jntormatlon on the global energy

reflux due to energeuc pamcies and some mlormatmn on the charactensnc energy of the precipitating particles.

In th_s paper v,.e mvesugate the sensmwty ot selected auroral emissions to changes m the neutral atmosphere. In

particular, v,e examine the behawor of OI 1356 A and two Lvman Birge Hopfield (LBH) bands and their rauos

to each other w_th changing atmospheric composmon The two LBH bands are selected so that one lies in the

regmn ol strc, ng O, absorpnon 1140,4 A I and one lies at a wavelength where O, absorpnon ts effectively neglt-

,_qble ( 1838 .a,_ We find that for anncmated average uncertamnes in the neutral atmosphere i factor of 2 at auroral

altnudesl, the resultant chanee m the modeled mtensmes is comparable to or less than the uncertainty m the

neutral atmosphere, l'he smallest variations, tor example, are tot I 1838 (approximately i0 to 20%) whde the

largest ',anatlon is ,,een m the OI 1356 A ermsslon '.,,hlch Is linear wah [O] to within 20%. We have also

investigated the dependence ot these mtensmes, and their ratios, to much larger changes m the composmon _r.e.

[OI/INe}) ,uch as m_ght be encountered m lart, e magnenc storms, or over seasonal or solar cycle extremes. We

lind that the ;ananon m the I 1356!1 1838 ratio over the equivalent ol a _olar cycle is less than 50%. The

,,ummer-to-wmter changes are approximately a lactor ot 2. The I t 356/I 1838 ratio Js a very. senstt|ve indicator ot

the charactensuc energy, showing a change ot 13 over the energy range 200 eV to IO keV. The corresponding
change in the LBH h:.ng-to-short v,_aveiength rauo _s much less labout a factor ot 3). However. the latter is

insensitive to changes m the neutral atmosphere I < 20% changes m LBH em_ssmn ratm for large changes in N,L
The three emissions therefore potenually provide a most valuable diagnosuc of particle characteristic energy and

energy flux

I. INTRODUCTION

While m sltu obse_'ations of energeuc particles provide

accurate mformauon on the particle characteristics at the point of

measurement, imaging from space ot the ennre auroral oval holds

the potential tor pro,,iding details on total auroral energy reflux.

estimates ot the characterlsttc energy' ot the auroral particles, and

Ihc capabilltx to map and relate the footpnnt of this derived

reformation hack along the magnetic field lines to _artous regions

t_t the magnetosphere Auroral imaging m the vacuum ultraviolet

permits obser'.'attons of the regions of interest under both day and

night condmons. Work by Rees and Lucke_ 119741 on the rauos

ot ,,isible cmzssmns. UV emtssmn intensity calculations by

Strlckla,d ct al [1983]. and analvsl_, oi UV auroral spectra bv

I_htmo¢o et al. [19881 all indicate the potential ,,alue of using

rauos ot emission intensities to stud,,' auroral processes. A major

tocus ol v.,ork in this area at the present t_me _s to establish the

quantttatl,,e footing on which such determmauons can be placed.

With the exception of HI L va. the Ol muittptets at 1304 A and

1356 A and the N, L,.man Birge Hopfield ILBH) bands are the

most prominent vacuum ultraviolet auroral emissions. The O1

1304 A emission has a high efficiency for multiple scattenng. As

a result, it has limited use for actual auroral imaging, although it

does have potential value as an indicator of the O concentration.

While the 1356 ,& emission does undergo multiple scattering, the

efficiency ts relatively small [Strickland attd Anderson. 19831 and

we ignore multiple scattenng for 1 1356 for this study. Similar

Copyright 1990 by the American Geophysical Union.
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considerations allow us to also ignore multiple scattering for the

N, LBH emissions that are also considered in this study. The Ol

1356 A emission is absorbed increasingly by O_, with decreasing

altitude. Thus its intensity varies strongly (inversely) with

increasing depth of penetration of the incident auroral electrons

and hence _v_th increasing energy. The N, LBH transitions are

electric dipole torbidden and the only prominent excitation mech-

anism ts ctectron Impact. The LBH emission may therefore serve

as a direct measure of the total energy flux of charged particles

into the atmosphere. The longer wavelength LBH bands, which

lie outside the regton of substantial O: absorption, are useful

indicators of the total energy influx, while the long-to-short

wavelength LBH intensity ratio provides information on the O_,,

and thus also some information on energy. These are the

emissions (O1 1356. long and short wavelength LBH) on which

we shall concentrate in this study.

The purpose of this paper is to examine the sensitivity of these

emissions to both likely uncertainties and anticipated changes in

the neutral atmosphere. This is just one step in the process of mak-

ing quantitative interpretations of auroral images, but an

important one. We will consider other aspects (energy spectral

characteristics and wavelength spectral extraction) elsewhere. In

this paper we conduct a series of sensitivity studies using an

auroral emission code that has been developed bv our group

IRichards and Torr. 19901. The results are discussed below.

2. DESCRIPTION OF AURORAL CODE

The behavior of auroral O[ 1356 and N, LBH emissions has

been studied with the use of an auroral computer model. The

model is a two-stream auroral electron energy loss code that deter-

mines the energy degradation of the primary spectrum as a func-

FILMED
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tton ot energy and altitude and determines the productv:m rates (1I

prominent auroral emissions. A more compiete description ot the

program, the selected cross secuens, and comparison with other

auroral models is given b`*' Richa,,.,'_ and Torr 11990]. The

N. la_,,i cross secuon, as well as tl ' ,:_uos ot the individual LBH

bands are taken from Aleflo and ._t,t.manskvl19851. Attenuaucm

due to molecular oxygen absorpuon is expticitl._ computed w_th

(), absorptmn cross secuons taken from Ok, awa and O_,awa

119751 and Hudson tl971 ]. The model currentl`*' assumes that O,

absorption at wavelengths be`*'ond 1750 A can be ignored.

The model is _ntimized bv incorporating varmble energy bins

tTorr et at. 1974: Swartz. 1985] for the energy grid. To prevent

numerical instabilities and violation of energy conservauon, the

altitude grid is variable to allow small grid steps (less than I kml

at low altitudes. As a result, energy _s typically conserved

to within 10%. The code utilizes eitber the MSIS-86 neutral

atmosphere [Hedin. 1987] or a user-supplied atmosphere. Either

monoenergetic fluxes or a specified energy spectrum may be

used. The incident energy spectrum may be modeled as a

Gausslan or Maxwetlian distribution, after Strickland et al.

11983[ (hereafter SJW). or a user-supplied dismbution may be

used. All simulauons reported below emptoyed a 1 erg cm : s ;

Gaussmn incident flux distribution. The Gaussian scale parame-

ter. labeled W in SJW. has been set equal to 0.25 E_.h,r which

yields a full width at half maximum of 0.5 tin2] _-' E.j,,,, where

E_har is the characteristic energy.

3. SENSITIVITY STUDIES

The emission studies reported here involved modeling auroral

emissions at local midnight at 60 degrees north latitude. Table I

lists thc MSIS parameters used in this stud',' as well as detailing

the range of solar activity invesugated in the latter part of the

study.

T,XBLE I \ISIS Model Parameter',

_olar A.t. II _, i1%

\'[imrnum \loderatc \laxt mLltYi

I,,, , ,.m Flux Index "g !111 __LH)

\,,erat2e F.... _m Index 75 l l(I 200

\p MaL'nellc "\ctwIt'-, Index 4 "0 HIO

Geographic lamude. 6(1 degrees: geographic longitude, tl degree,,: ,,otar

apparent trme. () 0 hour',: alas',, 1"73. 356

Three emtssmn ratios were studied. The first rauo was Ot 1356/

LBH,,,._, _here LBH,,,_ designates an N. LBH emission not

.drongiy dominated by Oz absorption. Specifically. the (2.8) band

at 1838 A was chosen for this purpose. Second. the ratio OI 1356/

LBH._.,_ was also modeled to investigate the relative influence of

absorpuon by molecular oxygen. Here. LBH.hou is represented by

the ( 1. I ) band at 1464 A. By analogy with the previous definition

I.BH.u°_ is an LBH emission which is strongly absorbed by O.,

The final ratto studied was LBH,,,_w LBH.h,._. The volume emis-

sion rates integrated over altitude _we the surface brightness or

column intensity of the emission which we shall designate I 1356.

1 1464. and 1 1838. These are the intensmes that would be seen bv

a nadir viewing instrument from above the emission layer.

3. I. Sensitivity' to the Uncertainty of a Single Constituent

The first question we chose to investigate was the dependence

of the selected emissions and emission ratios on the uncertainties

at any given time in our knowledge of the neutral atmosphere. We

have assumed for this purpose that if we base our calculations on

the MSIS-86 model atmosphere, the concentrations of O, O2, or

N, at auroral altitudes may on the average be uncertain by as much

as a tactor of 2. There will be occasions on which the uncertainty

will exceed a factor of 2. but typically it will be less. This is

similar to studies performed in SJW. but extends the investigation

to study the dependence of auroral emissions to each of the major

atmosphenc constituents. In addition, in section 3.2 below, we

further extend the study to include larger compositional variations

due to seasonal and solar cyclic variations.

The unperturbed, or reference, atmosphere is an MSIS model

for high solar activity at summer solstice. Figure I. Figure 2

i I I 1 1 I

350

_" 250

t 50 [

50 L L t t t[°1 J l I

1E+6 1E+9 1E+12 IE+15

Number Oensity (cm -m)

Fig. I. MSIS-S6 reference atmosphere used as the standard case in this

qudv iDay = 173. F,. 7 - 200. Ap= ItCh

0.3

0.1

c-
O)

t--

0.01

Fig. 2.

Ol 1356

LBH t 838

LBH 1464

l 1

0 2 4 6 8 10

Energy (kevt

Nadir viewing column bnghtnesses _1 1356. I 146.4. and I 1838)

calculated using the reference atmosphere shown in Figure I, The

diamonds here and in the remainder ot the figures show the selected

(]aussian characteristic energies for the incident electron energy

distribution
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,haws Ihe computed I 1356. l 1464., and 1 1838 intensmes for this

modei atmosphere as a function of energy o,_er the range 200 eV

to I0 keV as determined by our auroral code. In what follows we

shall compare these results with those obtained when each of the

atmospheric constituents (O. 0,. N,_ is, m turn. individually

multiplied bv 2 at all altitudes, while the other two are held

_.onstant.

Berate examming the results of these atmospheric changes, let

us consider the poss_ble impact of the changes. Doubling the con-

centratmn of a consnment might at first be expected to double the

effect at that specie on the column brighmess of the monitored

auroral emissions. In reality, however, there are a number of

possible options in the interaction of the penetrating electrons and

the atmosphenc gases that render the situation more complex. An

electron of a given initial energy will undergo a fixed number of

collisions tn a pamcular gas before thermalizing. Thus in the very,

simple case of a single constituent atmosphere, changing the con-

centratton simply raises or lowers the ahitude of the peak energy

loss +and peak emtssionL This example (single-constituent

atrnosphere_ ts representative of those ahitudes in which the con-

cemratton ot one atmospheric constituent dominates. From Figure

I tt can be seen that Itor the conditions chosenl O tends to

dominate above 400 km and N, tends to dominate beiow 3()) kin,

In a m_xture of gases, Increasing the concentrat,on ot one specie

relative to the others may also have the effect at raising the

penetration depth. However, the gases will compete for incoming

electrons m proportion to their mixing ratios and collision cross

sections, and the ratio of the resuhing emissions changes

accordingly.

Figure 3 shows the volume emission rate profiles for OI 1356 A

photons for the reterence atmosphere case for selected energies.

Only the very. soft electrons <<200 eVI lose thesr energy in the

altitude region where O is the major species. All other energies tie

in altitude regmns where the various gases can compete tbr

collisons w_th the precipitating electrons. Thus, for example,

increasing lhe concentration of N; will resuh in a decrease in the

production ot Ol 1356 A photons, because electrons that would

have coJJided _vrith 0 atoms now have an mcreased probabdity of

collidin_ with N+ molecules. The resutts of changing the 0, 0_.

and N. concenlralmns individually by a /actor ot 2 are shown in

Figures 4 and 5.

500

400

" 300

200

1O0

Fig. 3

0.4. key

_- 20 k_v

0 ........ i ........ I , . ,..,.,l , ....... 1 + t i ....

0.01 O.t 1 I0 100 100

Production Rate (cm -+ S")

Volume emission rate proliies Ior ()| ]356 A tar the reterence

atmosphere shown in Figure I.

Figures 4a and 5a show the impact on the computed OI 1356 A

and LBH surlacc briehtness of the doubling of IN_,I The 1356 A

intensity at 2 kcV drops to 05,c/c of the reference model, and then

rises back to 8b% _1 the rcterence model bv 10 keV, The I 1356 is

reduced at all modcled energies due to the fact that there are now

more collisions ,,_tth N,. v,=th a corresponding decrease in the

production ol O em_ssmns. The decrease ts not a full factor of 2

because of the abundance of atomic oxygen at the higher altitudes.

For the vc_' lowest energies Ihighest altitudes), where IN,.] is

much less than [()1. the I 1356 should tend to an intensity level

unchanged from the standard case. as the emtssion is simply

raised in altitude. The modeled emissions do not include initial

energies less than 200 eV which would lose their energy above

400 kin. but the lowest energy emissions do show this trend. At

the higher energies, the emission is produced primarily at alti-

tudes where N_ is the major constituent and increased N_, does not

result in a significant change in the competition between O and

N2.

For the LBH 1464 ,._ emission, doubling the N, reduces the

relative concentration of the dominant absorber, O,. Thus tot the

higher energies which penetrate to greater depths, the emission

flom the increased N, overwhelms the O, absorption. Absorption

by O2 is not significant tot the LBH 1838 A cmtssmn: there is thus

little dependence on the energy of the incident electrons.

Doubling the O_, density <Figures 4b and 5b) increases the

absorption of I 1356 and I 1464 at the higher energies (lower

altitudesl resulting in reduced column brighmesses. The LBH

1838 ,,_ emission is relatively unaffected by O2 absorption and is

influenced only by increased competition tot collisions of the

energetic particles with O, molecules. However. since {N-,]

remains the major specie relative to tO_,l. I 1838 shows only small

changes.

The effect of doubling the {O1 is shown for I 1356 in Figure 4c

and for the LBH emissions in Figure 5c. For I 1356 the effect is

close to a factor ot 2 increase in the emission at all energies, while

for the LBH emissions there ts almost no effect at all energies. For

_he very, low energies Inot modeled) where O is the major con-

_muent. the effect ot doubling the O is simply to raise the altitude

of the 1356 A emission. The trend to an unchanged emission can

be seen at the lower energies. For the LBH enllsSlons, the effect

of doubling the O concentration is only seen at the very. low

energies Ihigh altitudes) where the competition with N_, is further

increased. In lhe ahitude regimes ,,,,'here N: is a larger component.

the O does nol play a significant role.

From the results shown in Figures 4 and 5 it can be seen that

uncertainties of a factor of 2 in any of the principal neutral atmos-

pheric species translate into uncertainties of less than 20% for 1

1838. The LBH ]464 ,_ emission shows variations up to 70% for

factor of 2 uncertainties in IN_,} and less than 40% variation due to

other constituents, O1 1356 is weakly sensitive to changes in O:,

and N:. but varies almost in direct propomon to changes in O.

3.2. Sensitzvttv to Larger Compositional Chan_es

The neutral atmosphere exhibits relatively large compositional

changes in the course of the seasonal, solar cyclic and magnetic

storm variations. In this section we report the results of our

assessment of the dependence on the computed emissions chosen

tnr this study to changes of this magnitude. In order to simulate

changes we have varied the input parameters tFm 7, Ap. day of

year_ to the MSIS-86 model atmosphere, yielding neutral atmos-

pheres at summer and winter solstice for conditions corresponding

to low, moderate, and high solar activity tTable 1). The relative
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Fig. 4. Ol 1356 dependence on lO]. [OT]. and lN_l. Eachcu_,eshowsl 1356 for the doubled consttluent case cir,,ided bv [ t356

lrom the standard (unchanged) case.

compositional changes produced by these cases are illustrated in

Figure O.

The vanattons m the emission ratio of OI 1356 ,_, to LBH 1838

due to such composition changes are illustrated in Figure 7.

This particular ratio is very sensitive to incident energy. For any

given atmospheric conditions, the ratio varies by a factor of 13

over the energy range shown in the figure. What is interesting to

note in Figure s that the variation due to the compositional

changes produced by solar activity vanations ( low. moderate, and

high Fu) 7 cm fluxl are small (_<30%). while the vanations result-

mg from compositional changes of the type produced by seasonal

vanations are much larger _about a factor ot 2). In Figure 8 we

show the energy dependence for these various composition cases

tor the individual 1 1356 and 1 1838 intcnsmes. The LBH intensity

is relatively insensitive to the changmg atmospheric conditions,

while the OI 1356 is found to be primarily responsible for the

vanations shown in Figure 7.

The reason for this can be seen in Figure 9 which shows the

ratio ,_f the individual concentration changes relative to the

standard case. Figure 9a shows that the atomic oxygen concentra-

tion (for altitudes below 300 km, which correspond to the initial

energies modeled here) is significantly higher for the winter cases

than the summer cases.

Figure 10 shows the modeled volume emission rate altitude

profiles for the solar minimum and solar maximum summer cases,

As the atmosphere expands under the influence of increased solar

acuvity, the production rate for a gwen energy peaks at higher

altitudes. _" note is the fact that the behavior of the production
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i I I I
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Fig. 5. LBH dependence on [O]. Idol. and (Nq. Each cur_'e shows the LBH intensity tor the doubled consutuent case divided by

the LBH intensity lrom the standard (unchanged) case.
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dashed lines are tor winter. Within each seasonal set of curves, the largest

intensity ratios are obtained at solar minimum activity: the smallest ratios

occur at solar maximum.

rate profiles for electron energies below 2 keV is markedly dif-

ferent from that above 2 keV. The altitude at which this energy

loss peaks is approximately 140 km. This is the altitude below

which O2 becomes a competitive constituent Isee Figure 1).

Figure 11 illustrates the effect of local O__ absorption. As would

be expected, for emissions lying outside the region of O2 absorp-

tion (LBH 1838), the production rates are unchanged by local 02

absorption. For emissions within the Schumann-Runge absorption

continuum, however, the shape of the emission rate profiles is

changed significantly due to local 02 absorption.

The final ratio modeled was LBHIon#'LBH_ho, tFigure 12). The

ratio of LBH 1838 to LBH 1464 shows a dependence on the

incident electron energy that vanes only slightly with solar

activity. As above, this variation can be explained by the relative

densities of N2 and O2. The observed variability from solar

minimum to solar maximum is due to changes in the 02 column

density and hence in the O_ absorption.

4. DISCUSSION

We have shown the intensity ratio Ol 1356/LBH_o.s to be a

useful diagnostic for determining the characteristic energy of the

auroral particles using LBH_o.g to be LBH 1838. The I 1356/

1 1838 ratio is a very sensitive indicator of characteristic energy,

changing by a factor of 13 or more over the range 200 eV to 10

keV, but this ratio can vary. by up to factors of 2 with changes in

the neutral atmosphere. Almost all the change is due to variations

in 1 1356. In addition, the I 1838/I 1464 ratio shown in Figure 12
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_s found to be another potentially useful determinant of

characteristic energy. The N, LBH long-to-short wavelength ratio

vanes by about a factor of 3 between 0.2 and l0 keV but, unlike

the OI 1356 emission, is almost insensitive to changing atmos-

pheric composition. The longer wavelength LBH bands are also

useful indicators of the total energy influx, while the long-to-short

wavelength LBH intensity ratio provides information on the O,_.

Other workers have also attempted to use optical emissions to

characterize the auroral electron precipitatio, -or example.

Ishimom et al. [ 1988] studied a similar ratio (OI J.,56/LBH 1928)

using a recent version of the Stricldand model. Their modeled

emission ratio shows a sensitivity of 9 between I and !0 keV, in

good agreement with our results. In their description of the auroral

code used in this study, Richards and Tort [1990] conduct a

comparison between the two-stream model used here and the
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more sophisticated multi-stream model of SJW and find good

agreement in the shape of the OI 1356 emission curve. (Dif-

ferences in magnitude are due to the use of revised OI cross

sections in our model.) In addition to these studies. Rees and

Lurnmerzheim [1989] have suggested the N_, 3371/N_, * 4278 emis-

sion ratio as a determinant of the incident auroral energy. Their

results, however, disagree with calculations by SJW and with our

model, which shows the 3371 emission to be independent of

characteristic energy above 0.5 keV [Richards and Torr. 19901.

We have investigated the sensn,vny of Ol 1356 A. LBH 1464

,_X.and LBH 1838 A auroral emissions to changes in the neutral

atmosphere. Our studies show that OI 1356 varies linearly with

[O] to within 20% and shows much less variation with other

atmospheric constituents. The LBH 1838 A intensity is relatively

insensitive 1o typical uncenatnhes inthe neutral atmosphere (fac-

tor of 2 at auroral ahitudesl. I 1464 shows Larger variations

because of its additional mteracuon with O_. Our results are in

good agreement with similar sens_tn',qtv studies peMormed bv SJW
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who used a Jacchia model atmosphere IJacchta. 1977] to model

OI 1356 dependence on [O1 The dependence of these intensities

on much larger changes in the composition such as might be

encountered over seasonal or solar cycle extremes has also been

investigated. It is found that the O1 1356 A, intensity ,s sensitive to

compositional changes whil,. "e N_ LBH long wavelength emts-

,,,on ts relatively insenstti_ such changes.
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Fig. 12 Sensitivity of LBH,,,_:.LBH,_,,,, ,.._.:nsntv ratio to solar activity

and seasonal vanatmn. The curves have the same interpretation as in

Figure 7
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Mid- and Low-Latitude Model of Thermospheric Emissions

1. O*(2P) 7320 .A and (2P) 3371

Of. POO 

M...XRSHA R. Tore

_p,:u e 3_¢u.cu L.borator', ",'ASA Marvhati Space ['l,,ehl ¢..'tm/er, Html.,_','dle. Ahlb,_,vma

D. G. Tort and P, G. RicHaRDs

U,iver,_rtv (q ,41abamo tn Httlltc;'rlll_ •

S. P. YunG

BO_'III( ('{)l])f)rflflOII, Hltltt'.f;Vi//t', A/_lb_llllfl

The capability has been developed to mcxlel thermospheric airglow emissions on a sem_global scale GL < 5).

This model produce_, volume emission rates as a function ot altitude, latitude. Iongnude. and local I_me for any

",elected date. and solar and magnetic condmom.,. The model can thus be used to provtde three-dimensional maps

ol Ihe selected emr,,,lon for comparison wHh data obtained tram orbiting veht¢les. As such _t becomes an

es-,,entlat to_t m the plannme and interpretation ot a_rgtow observatton_. A umque tealure ol the model _s that it

mcorporate_ lull mterhem_spherlc couphng by solwng all the appropriate coupled equattons along the magnetic
flux tubes Irom the mesosphere m one hemisphere Io the rnesospbere m Ihe other hemisphere. As a result the

eltects ol conjugate photoelectrons _and heat tluxe.sl can be fully explored. In Ihi_, paper we select two thermo-
spbene emissu)ms wHh which to demonstrate the capabtlity. The firm i:_ the 7320-A emission from the metastable

O-(-'P'L The second _s the permitted cmlssmn at 3371 A t]'om the N_. second postive 0.-0 band. These two

emissmns, lot which the photochemistry. Is relatively well understood, are used to show the seasonal, diurnal and

solar cvchc vartauon,, on a scale that covers mtd- and low-lamude:,, and the eltects of interhemisphenc coupling
(conjugate photoelectrons L

[NTRODUCTION

Airglow em_sstons are important indicators of atmospheric

compos_lion and the mechanisms rcsponslbte for thc productton

and Iosn of the parttcular excited state from which the airglow _s

radtated. For example, the 0-0 band ol the N, ",econd posture

_,',',tem. _h_ch radiates at 3371 A. r, excited in thc air_zlow by

photoelectron unpact, and is It)st onl_, h'_ radiation As a result.

this cmtssmn is an excellent indicator ot the photoelectron exctta-

turn rate IKopp ct at.. 19771. The O t :P1 mctastable state, which

radiates at 7320 A. _s excited both by photoelectrons and bv

extreme ultravtolet photons. However. because tt is a long-lived

',tale. _t is lost by quenchmg by O. N:. and electrons m addition to

radiation. ]-bus at high altitudes. _hcre radiation _s the dominant

loss mechanism, the 7320-A emission can be used to infer either

the atomtc oxygen concemration or the solar ultraviolet flux if the

olher _s known [3,lerttrether et al.. t978: R,._cJt et al.. 19761.

In the past. a number of detailed studies of these emissions have

been made using measurements ol the surface brightness altitude

profiles obtained from orbiting spacecraf! (see. lor example.

Walker ez al. 119751 and Rusch et al. tl9771). In this study we

have globally modeled these two emissions tor a _artetv of

conditions.

The model v,e have used here is one that wc have steadily

developed over the years. We solve the coupled time dependent

energy, momentum, continuitY, and photoelectron transport

equattons from 80 km in one hemisphere, ahmg a lield line to 80

km in the other hemisphere tFigure I_ fYototg et a[.. 1980a.b;

('op)rl_hl Jgc/l) h_ lhc American (J¢oph_lcaJ L.ni()n

Papc_ nulnbcr q()JAOll)l()
{ll 4_-11227 90 t)(lJA-(I Itl It)_()5 (H)

Richards attd Torr. 1985a. 19881. The equations that are solved

arc summarized below:

I. Ion continuity equation for major ions is given by

a_....._,N= Q, _ L,N, - 'C'(b, I I )

where N, is the concentratton of the tth malor ion. (2, and L, are its

production and loss frequency, respecttvely, and cb, is the ion flux

defined below. The electron density ts assumed to be equal to the

sum of the ion densities.

2. Momentum equation is given by

d_, = N,U, (2)

where

= ( _"' "_U.-O. (I..LVN-,,,,G +I__VT, + T,JT, V'N,
U, \'¢(v)] " ' \N, kTt T, ";

+Zvr,+ ,v,
r, ' ' r, //

where U,, is the neutral wind velocity and where the subscripts i

and j are applied first to O + and H* respectively, and then

to d-I" and He + respectively. O +, H*, and He* are coupled

through collisions and the polarization electric fields. Since the

influence of O ÷ and He* on H" becomes significant in dif-

ferent altitude regimes and since the effect of He ÷ and O" is small

due to their mass ratio, this decoupling of a system of three major

ions into 2 pairs of major ions considerably simplifies the numer-

ical calculation of the major ion densities. Here or,/and aO* are

thermal diffusion coefficients and D, is the ordinary ion diffusion

coefficient of species i, as in the work by St. Maurice and Sc'hunk

119771.



3. Thethcrmalclcctronencrgyequationis

3 N,..k ;)__T= _ N,.kT,.V. U - 3 N,.kU,..VT_ - V.q_ + ZQ,. - EL,.
_- rll e 3

4. The ion energy equation is

3 N,k ;_T,
-g .--r- = -N,kT, V.U,- _ N,kU,.VT,-V.q,t _Q,-'CL,OI

(4)

(5)

5. The ion heat flow equation is

= I (-h,VT, N/n'v"' h,r;Tj) (6)q' -_ ,.'q/n/vj

6. The electron heat flow equation is

q,. = - k,.VT,. (7)

The thermal conductivity coefficients _,, and ,k,., and the term

= %'%'/(v,'v/)

where vj,', %'. v,'. and vj' are the effective collision trcquencies.

are given bv St. Maurtce attd Schunk 11977]. The ion-neutral

collision frequencies v,,, are from Schunk and Naev 119801.

7. The photoelectron Liouville equation ts given by

B d @*_ -T2_"+T_,b-+ q ÷ (8)
d:_- B 2<cos 0> <cos 0>'

d qb- __ r,d _ + T,d_ ,. + q + q- (9)
-Bds B " 2<cos O> <cos 0>

where

¢b *"(E.s)

d_-(E.s)

q(E.s)

photoelectron t'lux outward a/ong s;

photoelectron flux inward along s;

photoelectron production rate in the range E to

E+dE due to direct ionization processes;

qZ photoelectron production in the range E to E+dE

due to cascading from higher energy photoelectrons

undergoing inelastic collisions;

average cosine of pitch antic;

magnetic field strength:

k

T, = v ntltr,._ +p,._tr,._];
k

N.(3 %

<cos d>>

B

Fig, I. Illustration orthe interhemisphenc nature ot the code in which the

coupled and ttrne dcnendent equanons are solved from _,0 km in one hemi-

-,phere. along a tie/d line. to 80 km in the conjugate hemisphere.

and

n, _th species number density.

/_ photoelectron hackscatter probability for elastic con-

ditions with the kth species;

_r,' photoelectron total scatterm_ cross section for elastic

conditions with the kth species.

_r,, _ i_elast_c cross section for excitation Of the kth pan-

_cle species.

The model includes an option to increase the O'--O collision

frequency as recommended by BurnsMe t,t al. 119871. The use of

the Schunk and Navy [19801 values here does not significantly

influence the results of this paper.

The above formulation corresponds to conditions where the dif-

ferences between species temperatures and flow velocities are

assumed to be small, i.e.. stress and nonlinear acceleration terms

are neglected. In addition, density and temperature gradients

normal to the geomagnetic field lines are neglected and we

assume that the electron and ton temperature distributions are

tsotroptc.

The continuity equation is solved using a rather umque

approach. We can rewrite I I ) in terms of a funcuon F:

dF = rtN..-.L'+ V • (N,U,)-Q,+L,N, (10)
_t

Then, using a Newton iterative procedure to lind the minimum of

F. we solve for the density at the grid point. ). Figure 2 shows

how the field line is divided into elements about the actual grid

point J. The lower limit of the element It I) is placed midway

between the grid points j and j- I, and the upper h,"lt (u) is pla-

ced midway between ./and i + I. The tower limit of one clement is

the upper limit of the preceding element. We then integrate I lO)

between u and q, and obtain the densities by solving

Ul L) (N,,,U,,,:V,,U,,'_
F = (;IN, _Q+ ds + =

where B is the amplitude of the magnetic field. The values of i_Nl

;_t, Q, and L are obtained at the limits of integration, u and I. by

interpolation between the actual grid points.

In the past. many models ha,,e encountered numertcal problems

above about 3000 kin. due to the large diffusion coefficient in this

region which results in smatl densit,, chan_cs producing large

changes m _clocity. ,At lower altitudes, both ion-ion and ion-

neutral collisions arc important. ,._.hllc at greater altitudes, colli-

sions become tess important and the plasma can be accurately

Fig. 2. The numerical grid scheme used for the solution of the continuity

cquatmn.



described usm_ a dittusi',e equilibrium approach, The soiuuon ot

I I I I distm_,mshes this model from prevzous methods v, hich e,,'at-

uate the terms of the integral at only one point..-ks can be seen

trom I I I I and Figure 2, the flux at the upper limit ot one element

becomes the flux at the lower limit o! the next clement. These

tquxes must be identical and hence this method has bccn called the

'tlux preserving scheme." Furthermore. the flux at any grid point

_,, ctosel_, tied to the tlux at neighboring grid points, allowing

,,table solutions e`.'en for regzons where tar_e cham'es _ould eive

rise to unstable solutions with other numerical methods.

The model starts at noon with "'best guess" initial values. It is

allowed to run for 12 hours (in local tlmel before results are used

in order to reduce dependence on initial conditions. [t has been

found that the ionospheric densities o,,er a midnight to midnight

diurnal cycle typically repeat with onlv small differences due. for

example, to plasmaspheric refilling The plasmaspheric H- and

He - contents are initially low. and the flux tubes arc allowed to fill

contlnuouslv. The transport equations lor the three major ions.

He" t4-. and O'. are can-led out m i_o _teps. ,As

mentioned above, the coupled O" and H- equations are solved

t{rst, loltow,ed bv the He- and H- equations. _,.here the latter

use the ()--H- results. Fhus the equations for the three major

_ons arc essentially solved in a simultaneous manner. Below

approxlmatcly 180 kin. NO" and O3- become major ions, but

are obtained from photochemical equilibrium calculations

The numerical solution of these equations, boundar', condition',,

and other details are further discussed b`. }mtn_' ct al. I1980..h1.

The full interhemispheric coupling is difficult to handlc, but

tmcc incorporated it imposes no artificial upper boundar,, con-

dition,, for both thermal and photoelectron flu\c:.,. -]-his is most

m]portant for thermal couplin_ and the proper treatment ot con-

lugate photoelectrons I Richards and Tort. 1985hI which can be

.,ignificant in the calculation ol air_low emissions. T).pically.

attenuation ol the conjugate photoelectron flux b', Coulomb colli-

,ions rc,,ult,, in approximately 5c; cnerg} h,,,, The model

include,, the option to specMy los_.duc t_ pitch an_le ,,tattering

v.hlch v,c assumed to be lero for thls paper k liltcd dipole

approxlmauon is used for the Earth',, magnetic lleld IRt_lmrds

,Ira# Tom" 1986al.

The concentrauons of the ma!or neutral ,,pc_.'_es arc pro`.lded b`.

the ,MSIS-_6 IHcdm. t9871 to the model v, hich then computes the

Loncentrallons el rnlnor and excited Male species and nlalor ions

[Forr. 1985: R,'hards cz a/.. 1982a. 1986b[. In this paper a

,,imptc model giving daytime poteward winds and equatorv, ard

neutral v. inds was employed. This behavior _s ,.'onsistcnt with the

results obtained using the method ol R,'hard._ am/ Torr l1986tq

and ,_,hller et al. [1986]. The model includes the opticm to use

m_el _xinds of Hedin e/ al. 119881. KHh'e, et al. 11987] and

Killeen ipnvate communication 1989"_ Note. tl the Hedm et al.

II 9881 model is used. the O "_"3 collision lrequcncy of Burn_tdc" et

,/ 119871 ',hould bc used in order to produce the obscrvcd h,,,F2 at

night

The chemistry, of all significant emtttln 9 species is incorporated

in detail, including the excitation of the metastable states {M R

Torr and Torr. 1982] and vibrational states tRichards et ai..

1986a:, Richards and Torr. 1986c1. and the odd nitrogen

chemistry [Richards et al.. 1981. 1982b: Rwhards. 1986l. The

vibrational population distributions of N, are determined, an

important factor in calculating the ionospheric O* and N,

concentrations. The model also includes calculation ot the `.,ibra-

tional populations of N_, + . but this does not significantly affect the

results reported here. The photochemistry _s that described by

T, Jrr t 19851 as updated and shown here In Table I and illustrated

m Figure 3 -hi equatorial latitudes, where electric fields play an

_mponant role. the electron concentrauons are obtained from the

fully analytical ionospheric model of Anderson et al. 119891.

Elsewhere. the electron densmcs are computed self-consistently

bv this model. The transition occurs between L = 1.5 and 1.8

v. ith interpolation between these L shells. The major elements of

the code arc shown in Figures 4a and 4h. The solar EUV flux is

obtained in the following wav. For solar minimum IFI0.7 = 71)

the model utilizes the F7.4113 reference spectrum from Torr et al.

[ 19791. with the tluxes below 250 A doubled as rccommended by

Richards and Tm'r 119841 and supported bv Oealra and Judee

[19861. For other levels of solar acuvity, each of the 37

,.vavetcngth intervals is scaled linearly a.,, a function of FIO.7

using the solar maximum measured flux at FIO.7 = 206 given by

Torr and Tort 119851. For further details, see Richards arid Torr

119881. ;`.hich al_o provides the cross sections used.

The main outputs of the model include ion densities (O'.

O'(_S). O-f-'DI. O-I:PI. H'. He'. N'. NO + . N_, +.

N,-:_l. neutral densities INIaSI. NI'-D). NI'-P). NO. OIID).

()[IS). N?tA".,'L N::"). electron and ion temperatures and

t]ow _,elocltics. the photoelectron tlux. and a large number of

emissions Isce Figure 4al.

During the Atmosphere Explorer C. D. and E program.

numerous studies were conducted which compared the photo-

chemistry of the code with in _ltU measurements of species con-

centrations. The photochemistry yields results consistent with the

data base taken over the lifetime of the AE satellites. Generally.

,.cry. good a!zreement with measurements has been obtained with

regard to all parameters with the exception of high altitude

electron temperaturcs m the plasmasphere and ionosphere [New-

herrv et al.. 19801. The model has been extensively tested against

comprehen,,ive satellite and incoherent scatter radar data bases

])'otmk' ct ,/. 1980a.b: Chtmdler ctal.. 1983: Rwhards and

Tin'r. 1988: \'<'_t berry ctal. 1989: Hero, It: et al.. 1990: Richards

_t at, [t)8_al _kparl trom the input parameters Isuch as data and

h+catton+ the tmlv tree parameter tn the code is the pitch angle

-tattering el photoelectrons +n the piasmasphere. In its present

term. the model ts idcall,, ,uitcd tor ,,tudlcs o[ the airglow

k.lnissiena,..

The code is run on the Marshall Space Flieht Center CRAY

XMP computer. Values el output parameters are provided on a

.slobal grid ot points, pro,,_ding results in a latitude, longitude.

altitude, and local tm_e mesh for anv ,,elected date. or solar or

magnetic ,.:onditions. For the cases discussed in this paper, we

have run the model P,',r 144 flux tubes. ,.`.hich corresponds to 144

northern and 144 southern hemisphere locations Figure 5 shows

the locations of the field lines along `.`.htch the equations are

,,olved. These are constrained to L <_ 5

We ha',e chosen the O-I:PI emission at 7320 A and the N,

,ccond positi_,e tid,) band emission at 337t A tot the initial global

modcling. The calculations ha,,c been made for November 28.

1983 for which the FtO.7 cm flux was 89. and the Ap index was

23. Thus the November 1983 calculations correspond to a period

of relatively low solar activity. An earticr example of the results

Ior the 7320 A case has been shown by Tort et al. 119901. The

results shown here represent a significant _mprovement over the

T<,rr et al. 119901 case. m that wc have added approximately 50

more flux tubes at low latitudes II44 vcrsus 96). In addition we

have used much smaller t_me steps through the iwilight conditions

[5 minules versus 20 minutes). For comparison, wc have also run

Ihe calculations for the same day of ycar. but for conditions
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TABLE I. Summary. o( Photochemistry Used in the Interhemisphenc Model

Reacnon Rate Coefficient (cm-' s -(1

Number Reactmn or Rate (s-_) Reference

I 0 _ + e--+O + hv -4x 10-_"IT/300) °7

2. O, " _- e--+O + O 1.6x 10-7 (300/7",) U_ for 7",._> 1200 K

2x 10-r (300/7",) ° r for T,. < 1200 K

3. O ÷ + O:.-+O," + O 2.1 x 10 -_ {7",,*2 T,/3x300} "°763

4 O" + N,-+NO" + N 1.533xl0- t'z' - 5.92x 10-13 (T_td300)

+ 8.60X 10-14 (T,f(300) e

for 300 <_ T_., <_ 1700 K

2.73x 10-12 - 1.155x 10-I-' (T¢,¢300)

+ 1.483x 1(3- I_ (T, rr_'300) 2

for 1700 < T,,, < 6000 K

5. NO" + e-.l..N + O 4.3x 10-7 (T,]3001-4

6. N.-," + O-+NO + ÷ N lax 10- _° (7",13001 -'_ for 7", < 1500 K

7 N.-," + e--+N + N 2.7x 10 -7

8. N," + O-*-O" +- N, 0.07 ke, (T/3001 ° :'

9 N:* + O,-+O," + N, 9.1xl0- '_ exp(-0.002 T,,)

I0. N* + Or'-_-O," + N 4×10- b°

II N" ÷ O:-+NO" * O 2x10- _°

12. N" + O,-+NO" + O('DI B = 0.7

13. 02" + N-.._.NO" + O 1.2xlO -")

14. O_,* + NO-+NO ÷ _ O., 4.4x 10 -)°

15. O'(ZD) + N_,--I,-N_" + O 8x 10- I°

16. O'(ZD) + O-+O*("$1 + O 5xl0- '2

17. O'(2D) + O_,_O," + O 7x10 -_°

18. 0"(2D) + e--._O÷(4S) _- e- 6.6xlO--S(3OOlT,) _

19. O'(ZP)-+O'(2DI + hv 0.173 s-'

20. O*(2P}-I,-O'(4S) + hi., 00,47 S-'

21. O*(2P) + e--','O'12D) + e- 1.5x 10-7 1300/T,) _

22. O'(2P) + e--+O'(2DI + e- 4.7X 10 _, (300/TA _

23. O*("P) + N, -+products 4.8x 10 -_°

24. O+(2P) _- O-+producis 5,2x I0 -_

25. He + hu-+He" - e- 4.0x 10 _ I 2 x 10 z (c)

26 He" + N_,.-_N* _ N + He I:,< Iff"_

27. He" + N:-+N," - He 0.5× I0 -)°

28 O* + H-+H* ,- O 2.2xl0-'* (T,) _

29. H* + O_O" + H 2.5x10 -)_ . (T,)S

30. O* ÷ N(2D)-+N ° _- O 5xl0- _l

31. NO" + e--+N("D) + O 13 " k_ where 13 = 0.76

32. N_, + + e--+N(:D) + N 13 " k7 where 13 = 1.9

33. N," + O-+N(:D) ÷ NO* 13 " k6 where 13 = 1.0

34. N" + O,-+N(2D) + O_," 13 " k.) where j3 = 1.0

35. Nt2D) + O-+N(4S) ÷ O _7x10 -_3

36. N_"_D) + O_,_NO + O 6x 10- _2

37. N('_D_ + e--+NQS) + e- 5×10-'°(T,]3001S

38. NI2DI + O_,'-+NO* + O 1 ×10- _-

39. N/aS) _- O,_-+NO + 0 -1.4× 10-_2exp(-3220/TI

40. N + NO-+N: ÷ O 3.4xl0- _*

41. 0,_ + hv-+O(ID) + O 13 = I; Jz¢(Oz)sa : (I.5-2.81× 10- °

42. 0__" + e--+Ot_D) + 0 _ k_ where 13 = 12

43. O(_D) + N.-+O(3P) + N, 2.0x10 -_' exp(107.8 T,,)

44, O(ID) + O_,'+O(3P) + O, 2.9x 10- ii cxp 107.51T,,)

45. O(_DI_OI3P) + hv 0,00934

46. N(_D) + O,-+.O(_D) + NO _5x 10 -_2

47. 0,_* + e--+O(_S) + 0 f3 k, where 13 = 0.08

48. O, + + N._O(_S) + NO" _2x I0 -'_

49. O('$1 + 0(3P1-_0 + 0 2xlO -'_

50. ()(_D) ÷ O+O + O 8xl0 -'2

Torr 11985]

Torr and Torr ( 19811;

Mehr and Blond( {19691

Chen et 41. [1978]"

St. Maurwe and Tort [ 1978):,

Albmtton [ 1978];

Chen et at. 119781

Torr and Torr 11979]

McFarland et al. 11974]; Torr [1979]

Abdou et al. [1984 I

McFarland et al. 11974]

Lindinger et al. [ 1974]

Huntress and Anicich [ 1976]

Huntress and Aniclch 11976]

Langlbrd et al. 11985]

FehsenyMd [ 1977]

Lindinger et al. 11974]

Rowe et al. 119801"

John.ten and Biondi [ 1980}

Abdou et aL [ 19841

Johnsen and Biondi { 1980]

Henry et 41. [1969]

Seaton and Osterbrock [19571

Seaton and Osterbrock I 1957]

Henry e/al. [1969}

Henry et al. [ 19691

Rusch et al. [ 1977]

Rusch et 41. [ 1977]

Tort and Torr 119851

Adams and Smith [ 1976]

Adams and Smith 119761

derived from Banks and Kockarts ( 19731

derived from Banks and Kockarts [ 1973"1

Tort et al. [ 19791

Klev et al. [1977]

Queffelec et at. 11985]

Fredertck and Rusch J 1977}

assumed

Richards et al. [ 1981 ]

Lin and Kaufraan j 1971 ]

Frederick and Rusch [ 1977]

Dalgarno J 1970]

Becket et al. {19691

Lee et al. [ 19781

Tort et al. 119801

Abreu et al. 11986]

Streit et al. [1976]

Streit et al. 119761

Fischer and Saha [ 19831

Rusch et al. I 1978]: D. G. Tort et aLI 1981 l

Bates and Zipf [1981 I; Abreu et al. [1986]

Fredertck et al. [ 1976]

Slanger and Black [ 1981 ]

Abreu et al. [19861
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TABLE I. (conunued)
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React{on Rate Coefficient qcm ' s-')

Number React{on or Rate (s-_l Reference

51. O(_S)+O('D + hv 107 Kernahan and Pane [1975]

-.O{_P) + hv 004-14

52. N(:D) + NO-,_N_ ,- O 7×I0-" LinandKaufTnanI]971]

53, O('S) + O_-,),.O(_P`) + O, 4 9× 10 -_' exp I - 1730/RF) Zipf[1979]

54 N,(A3_,7) + O -+ products 2× I0 -_ Piperl1982`)

55. Nr(A3E,7) -, O-+-O(_S) - N, 13 " k_a where 13 = {'137 Piper [19821

56. N,'* + O--)-O" _- N, -2×10 -'°° Abdouetal. [19841:Torr[f9851

57 N, + hv..c.N+ + N + e (1.78 - 5.t4)×10 -'s TorrandTorrl19851"

-')'N2* -'e (3.06 - 882) x 10r

58. 0 + hv-.).O*(aS) t e (.0.98 - 2.81)× 10-7 Torrand Torr [1985')'

+O+(_D "1 + e (0,79 - 2.34) xl0 -7

-_O÷("P) + e (0.45 - I 38) x10 -7

--')-O*(4P) + e (I.04-3.43)x 10 -_

--)-O'(2W) + e (0.46 - I 42) x I0 -_

_Since the results of Chen et al. [ 19781 stop at 700°K, we normalize the convened dnft tube data pararnetenzed by St. Maurwe and Torr { 1978] at this

temperature.

_'rhe model computes this rate coefficient as a function ol N_" vibrational temperature qT, ). The value reduces to that given by equation (0) when T,. = T..

Inclusion o( this process ts an option available [see Abdou el al,, 1984].

_The ranges given for the ionization trequencms indicate the variation over a solar cycle

hit

e

e

k high

N,NO e

)z N,NO

Fig. 3. Schematic of the thermospheric and onosphenc chemistry that is incor'l:_rated in the model.



,:orrespondin_ to solar maximum I/-IO7 = 1',_4. Ap = 23). This

,,tudv deab, only wtlh the mrglow, and we do nol show results for

latitudes hi_her than L = 5.

Details ot the results are given m the following ',tenon.

MODI-LING OF THE 7320-A AIRGI.O_. _, EMISSI()N

The 7320-A emission arises from the O-I-P_ state, v, hich is

produced in the thermosphere by two mechamsms: photmomza-

non and photoelectron lonlzatlt)n:

0 4- hv--_-O_(-'Pt _- c

O + e;" _O*(-'P) _- 2e

'.*'here the photoelectrons may be those produced locally, or those

produced in the conjugate hemisphere and transported along tl'.,:

magnenc field lines. The O'i:P) is lost bv several mechanisms:

'-ldiatlon

0+(2P)_0"¢S) -'- hv,_,_o

,. cHIi.,,lonal deactwallon

O*_'-P) + N..+N," - 0

O-t:P) * (_)-*-O- - O

O+(:PI _ t'_O-I'D) 4- c

O+(2P) -'- c _()-IaS) - ("

l-his photochcnustry has bccn re; mwcd bv l'orr mui Torr 119821.

It should hc noted thal ',race publicanon of the aeronomleally

derived ,,alucs ot the rate coefficients bv Ruses et al. 11977]. the

solar EUV flux bctow _-250 A was doubled. We estimate that

,.'_hcn quenching dominates, the rcponed mtcnsmcs may be about

._()c,Ctoo hlgh.

Plate I qlow,, the 7320-A _,olume emission rate at the peak of

the la_,cr as a tunctmn ot latitude. Ideal tin)e (longitude) and alti-

tude. The upper plot shows the peak volume emlssion rate as a

lunctlon o'_ L_tltudc and local time. Because the model has long-

itudinal ',arlabilitv resulting from both the MSIS IHediJl 19871

model atmosphere, and the interhemispherie coupling, this par-

_icular plot is shown for 00 UT. This UT is equivalent to placing

midnight at i) ° longitude, the Greenwich meridian, and noon at

180 ° longitude, i.c. over the Pacmc Ocean. Where the volume

emission rate becomes so small as to be effectively zero. the

',alucs arc not plotted. These regions can be seen near midnight

for equatorial latitudes, and represent no production at these

times. The _raphics tend to smear the northern and southern lati-

tude boundaries, by a tow degrees to the north and south, respec-

tively. The solunons arc only valid, however, within the L _< 5

region iilu,,lrated in Figure 5

The b:: , tcaturc_, ,,hown in Plate t have been dl_,.ussed by

Tmr u/' a/. 119901 but wc u. fll re'view them here briefly as this

plate will be used lot the comparison with othcr cases. Summer is

(a)

Fig 4h':_: Schemanc illustration ot Ihe ma/or input and output elements ol the field line interhemisphenc plasma t FLIPl code: tb)
IlluMralmn ot the Ilow ol lhe solulions
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,,harpl,, In Figure 7 _c _ho,* the production and Io,,s rates for a

,,t_lar zcmlh angle el IO5-" in the c',cnm,.2 ,,outhern hemisphere.

The peak LV pholoioni/ation ha_ ruben l• above 6(X) km. A

,ccond peak _ l_rmed near 3()() kin. [hc laltcr _ a result of photo-

cicclron,, v.h_eh arc prc, duecd nn the lOlll/a|lon proees_ [h_[ c_,i.used

the upper peak. Fh¢ phot,.)clcetron,, arc [ran_.porlcd downward and

Io_e their cncr_ near .;{)(I km in the nmpacl iom/alnon el alomi¢

,,\),_cn.})ILI[C -_ _[lO_.x the MJIIIC lli[Orlll;.l[lOll a'-, '_,;I _, _I%OFI IR Plate

I. bul ',,¢r',u', ,,c,lar IC1111n ail_IC in,qcad o! Io_.alume, Fhis plalc
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rcduccd _ hen lh¢ data arc plotted iii lhl,, lOrtllat.

Plate I [hc 7_21)-.',, _lqun_ccmlx,,l(mratclphoh)n,,cm-:,,-')allhcpeak_.}l the la,,'cr a_, a luncllon ol ailltud¢, latltud¢, and locai fume

. hlll£1ludc I lor I)(l [ __" I-hc upper plot _hu_ lhc peak ',olumc Cllll_l,,)n ralc onl',. _i_ LI luncllO[l ol lalllUdC _lld lo_.al lllllC [-he "_OlUllllt

_nlnx_ion r;dc n_ on ;_ h-_' ,_,iI¢ ['hc rc_uic_ arc onh _,Jhd _llhln the L ": _ boundan_.'_ _hu_n nn Figure 5
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.An interesting feature of Plate I is the fact that there is signifi-

cant production (-_0.2 cm -_ s-_) at high altitudes at midnight in

the winter hemisphere, This is duc entirely to photoelectrons

transported from the summer hemisphere. This conjugate electron

production rate together with the loss processes are shown in

Figure 8. Without the interhemispheric capability this production

,ource would not bc modeled.

Because or thc longitudinal a.,,.'_mmcmcs ot the Earth's mag-

netic field, the con lugate photoelcctron production rate varies for

different maps _,enerated for different universal times. Plate 3



Plate3. The7320-Avt_lumeeml_onrate t photon,, cm- ' ,,-_ _at the peak of the layer as a tunctton ol altitude, latitude, and local time
t_r 06 UT The volume em_,,,,km rate _, on a log ,,tale. The mt_ing area_ near the equator at midmght are v_here the ernts_,_on rate has

cIl,.2t'tivct_. _tme 1,,1zero



900 _--
i

i

k

i

GO0i-
I
i

<

t"
J

i

lO0 k_.,..
10"6

10 _ .I0-5 10 -4 10-3 .TO-,?. '_0-:

Fig. 7. Production and toss rates for 54°S for a solar zenith angle or 105 ° (LT = _X)I.

,,hows the global plot for the same conditions as Plate I. but [or

UT = 0600. This is equivalent to placing midnight at 90°W. over

the eastern United States. In this longitudinal sector, higher

,,oulhcrn latitudes (solar illuminated) map to lower northern lati-

tudes. Abovc 50°S the Sun does not set and conjugate electrons

are prcsent all through the night near 50°N. Thus the conjugate

,,ource is seen to be significantly more pronounced than for 00

UT. Plate 4 shows the integrated volume emission rate, or surface

brightness _m ra}leighs). _v_th and without the conjugate photo-

c',,:ctron source. The scale has been adjusted t_ nhancc the winter
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Fig. 8, Conjugate photoelectron production otO - (:P) at night in the winter hemisphere (49°N. X = 137°]. The corresponding loss
rates are atso shown.
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Plal¢ .5 The 73 "O-A ",oiume emls:,,ion rate i photon,, cm ",-'_aIthcpeakolth¢iavcrasalunctmnolallilude. lalilude.andiocaltun¢
h',r _X] UT The result,, are lot Ihe ,,amc cia'., a_ .Plait I _N()_.emDcr 2_) but for ,,Olaf maximum co,qdlllOn_,, The volume erm,,,,ion raze is

t_l_nttime conlugate producuon This mterhem_spher_c ,_mrce

rc,,uit., m 2 to 3 R of 7320-A air,icy.

Plate 5 shows the ,;ame da,, el ',ear as Plate 1. but for condmons

repre,,cntme ",olar maximum. The principal differencc_, between

[he_,c tao are in the o,,era}l increase m emission rate and the

,_,.craH increase m altitude of the emr, sum peak. Both ot these

cMccts are to be expected on the basts of the solar l]u_: and neutral

atmo,,phcrc changes.

Plate h ,,hov, s the results of integratm_ the ,.(flume cnnsslon

rate,, ot the solar nllnimum and maximum cases (Plates t and 5)

o,,er alhtude to obtain the vertical surface brlmhmess. These

intcnsltlc'., {in raylmghs) are what an orbitin8 instrument v, outd

,co Io_km_ ,.ertlcaiI,,' downward on the atmosphere

MODELING OF THE ,N, 33'7l-A .AIRGI_O_A

rh¢ production mechanism for the cxcltatmn of the N, ',econd

F,o,,m',c ,_,,',tem m the dayglow is photoelectron impact:

X.,{,k'_v.l - c -.-%,4(_. ) - c

Ihc 3371 -_,Cil]iS%}{}n arl_cs from the t_-4_ hand el the _cc_)Md po_l-

IL_C x\ _[CI11:

Since the transmon is permitted, radiation _s the only loss process.

The excltatmn cross secuons for the 0-0 band are those o1 hnami

,rod B,w_t 119741 which are 25_ of the total cross section.

Plate 7 ,,hews the results of the semigIobal ,,oiution ot the 337I-

-k volume emission rates. The production rates tbr noon at mid-

]atitudes are shown in Figure 9. The resu}ts shown in Plate 7

follow the behavior anuc_pated from a ,nmple photoelectron

source and radiative loss. The behavior changes after sunset in

that the peak production rhcs m altitude and fails in magnitude.

&cain. the high latitude conjuoate photoelectron ',ource can be

,,con durin_ the night in the v,'mter hemisphere. While v_c do not

,how the 06 UT case here. the comugate source again becomes

more pronounced for the different magneuc field onentatmn, as it

did for the 7320-A case, because of the more ta',orable alignment

of the magneuc tie_d lines for this purpose.

Plate 8 shows the global model of the peak 3371-A ',olume

emission rate for solar maximum. What is interesting to note in

this case ,s that. apart from an overall increase In the altitude of

the emission peak. the peak emission rate distribution is very

similar at solar maximum and ,,olar minimum. However. the dif-

rercncc m the ,,crticaI intensity _s ,,,gnfficant. lhis _s seen in Plate

9 which ,,how,, the integrated column _urtace bn_hmess for solar

nunlmun_ and maxmmm, the dittercnce ts iargeI_ due to the dif-

toting scale heights, a_, can be _cen m Figure 9
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Plal¢ 6_. Solar minimum ca,',c shown in Plate I.

Plale O.

I-ruure 5

Hale O/+J Solar maxmlum ca_e >,ho',,+.n in PTale 5

Vertical column rate,rated _,urlace brt._htne,,,_, (in ra'v'leL_hs) The resuits are ,ani),' ",,alid '.,v+thln the L "-_5 h(+undarle'., ,,ht+v,.,n in
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Prate 7 \ _qume L,rnl,_,qorl r_iIc iphl)ton,, Clll 'x t iat lhc peak ol the ;.37 ]*A [a',cr _cr,,u', JIII[Hdc. I,MIIUdC. and Meal Ilmc _iiln_lludcJ

!L_r near ,,oi4r minimum ,,.'on0Mlons [hc ,,_fiumc cmls,,lon rate is p}ollCCI on d Io,,2''_,._4ic [i_,..'re',,uit',arc _nl', _,ahG ".,_.llhlnthe L. "

'u 'tlrlddl IL." _i)I _*_, rl tn I-I_UrC"

S L ",,IM_R '_

In thv, paper ',,,cha,,e presented the tir,,tmterhem_sphertcalI,,

_.oupied model,, ol the OI-'Pi and N,i;C) alr_Iov, ernl,,slonat

-'_2{'1 >, end 3371 ._. rc,,peetP.el,,, co..ermg mid and iuv,, latitudes.

rlle,+,e Lirc D.',O Cmls',ton*., for v.+hich the mechanisnl:., ;.+.rerc!atzvei',

v, cit undcr,.toc, d. ,.dlc, v,,'m£ u:., to c\amlne here the nlt'_q:r:_+J,_','

i'+he ,,cmluh'_b.aI _raph_caI maps clearly illustrate Ihe dmrnal.

,.ca,,,.maJ and ,,c, iur c,.ctlc '.arlabtlttv oI thc,,c C[lll+.,_,lOf]N [[1 both

cw,c',, c_miu£atc photoelectron:-, result m c',,c_tatu_n at m_d t,' '._£h

mehtlmlC Mt_ludc', in the v..mtcr hemisphere The in, m-

-,pnerl_.,._,upiln_ _.upabiJit} oI the model alloy,,,, ,.is h, nc

extent and the Ion,,+tudmat "..artabd_t', _+r the Conltl_alc photoelec-

tron ettcct,.

#hi+ + <,dcl prm. tdc,+ a capab_llt'.. ;,.muh _.,.,ii greatly enhance the

dbllit",' t(; inler_rct alr£io_ ob,,er',.atlons made lmm _,pacecraft.

\nv line id ,,ight ,'.zcomctr} can nov. he prmccted through the

three-dtmenslonaI model ,,_flut_on. and h', mtcgrat,ng along the

projected line ot .,_ght. ,,urtacc brluhme,,s i,.crtu.'a] or ,.,lant path)

,an be obtained (or comparv, nn v.._th the ob,,cr,.at_ons. Further-

11w_re. becau':.,e ot the complex ,.artabitit,, c',,mb_ted by these

cm,s:-,w, ns o,.er the L + 5 ran,.2,e, thr, mc,dcI al,,o provides a

.,aluablc toc, i lt;r piannln£ c,t +.u,:h c,h,.er'..atzon',

Plate _;' \ crllcal Intcn_.iP, ot the 337t+-\ airglow _ln ra.lVtelgh,,i lor ,.oiar mlnlmtlnl and ,,oiar maximum umdlll(m _, The ,,,.liar

ma'_mlum piu( iN sho',_ n on t_o ,,,.:ales: one la ,,hov, the l_te_ll_' '.anatton and one to ail,av, comparl_,,,m v.,uh the ,.olaf minimum pJol

,ho,.,,n in Pkllc 9a The results arc uni,, _.al_d ,,.,Hhm Ihc ". 5 boundarl¢'.. ,.hov,.n in F...'urc 5
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Plate _. Volume emt,,_,ion rate Ipholon,_ ¢rn-' ,,-_) at the peak ol the 3371-A laver for solar maximum conditions The wflume

.'lltt,,,,l_nrate t_,plotted on a io_ _ca_e
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A MIDLATITUDE INTERHEMISPHERIC MODEL OF THE O -I :P_ AIRGLOW EMISSION AT 7320 :%
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D. G. Ton" and P. G. Richards
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Abstract. The results are reported of the first interhemispheric

model of the 7320 A airglow covering mid- and low latitudes, at all

longitudes. A comprehensive mode[ of the ionosphere and thermo-

sphere is used to compute volume emnssion rates as a function of

altitude, latitude, longitude, and local time. Selected results are

shown here to illustrate the computational capability. In particular

we discuss the diurnal and seasonal variability and interhemispheric

coupling of conjugate photoelectrons. The model is particularly well

_,uited for airglow studies, and provides a valuable toot for the

comparison, interpretation, and planning of spectroscopic observa-

tions made from orbiting platforms for all significant thermospheric
emissions

Introduction

The O + (-'P) airglow emission at 7320 ,% provides a means of deter-

mining the O + (2p) concentration. Measurements of this emission can

be used to determine the atomic oxygen concentrauon or the sotar

UV ionization frequency IMenwether et al., 1978: Rusch et al.,

1976]. The photochemistry of this species has been established

largely on the basis of the comparison of steady-state altitude profile

calculations with surface brightness measurements made from satel-

lites [Walker et al.. 1975: Rusch et al., 1977]. Observations of limb

brightness are inverted to yield altitude profiles of volume emission

rates. The pnncipal sources and sinks ofO + ('P) have been discussed

in detail by Ton" and Ton" 11982].

Over the years, we have developed a comprehensive model of the

_onosphere. thermosphere, and plasmasphere. This model solves the

coupled time-dependent energy, momentum, continuity, and photo-

electron transport equations from 80 km in one hemisphere, along

the field line. to 80 km in the conjugate hemisphere [Young et al..

iq_0]. The full interhemispheric capabdity allows for the proper

treatment of thermal coupling [Richards and Ton". 1986] and con-

lugate photoelectrons [Richards and Ton-. 19851. which is important

in the calculation of airglow emissions. The concentrations of the

major neutral species are provided as input from MSIS-86 [Hedin.

1987] to the model which then provides the minor and excited state

_pecies and ions {Ton'. 1985]. The chemistry, of all the emitting

species ts comprehensively included {Tort-, 1985], Ab initio calcu-

lations of the excitation and loss rates are pertbrmed for the metas-

tabte species [Ton- and Ton". 1982] and the vibrational states of

molecules and ions [Richards et al.. 1986]. The concentrations of

odd nitrogen species are also computed together with those of other

mmor constituents [Ton" et al., 1980]. The photochemistry, cun"entlv

used in the model is that defined by Ton" { 19851 (Tables A-8 through

A-12 and A-19 through A-21) with the updates, con"ections, and
additions summarized in Table 1.

The three-dimensional capability is achieved by running the code

tor approximately 100 magnetic flux tubes. Because the model is

mterhemlspheric, solutions are obtained simultaneously for the con-

lugate hemisphere. This yields a total of approximately 200 grid.

points, The flux tubes are selected along various L-shells for L _< 5

and the grid on which the code is run is shown in Figure t in geo-

Copyright 1990 by American Geophysical Union.
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graphic space. Because of the large computational requirements, the

MSFC CRAY II computer is used. Results are output on a tour-

dimensional global grid. compnsing latitude, longitude, altitude.

and local time. Input parameters are date and solar and magnetic

indices.
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Fig. 1. Location of the conjugate points along L = 1.08 to L = 5

which mark the tietd lines along which the computations were made.

In this paper we have selected the 7320 _, emissLon to illustrate the

global airglow modeling capability. The calculations have been

made for conditions corresponding to November 28. 1983, for which

the F I0, 7 cm flux was 89 and the Ap index was 23. Thus these calcu-

lations correspond to a period of relatively low solar activity.

Results

Figure 2 shows the results of the global solution of the 7320 ,_,

emission. The volume emission rate at the peak of the layer is plotted

as a function of altitude, latitude, and local time (longitude). This

particular plot is shown for 0(3 UT. which is equivalent to placing

midnight at 0 ° longitude, and noon at 180 ° longitude.

Several interesting features appear in the results shown in Figure

2. Summer is in the southern hemisphere and the more extensive

solar illumination in this hemisphere is immediately evident in the

longer duration of the daytime peak values ( volume emission rates of

the order of 10 photons.era 3.s-' ). The model results are valid for the

latitudinal regime indicated by the envelope of the points shown in

Figure I. The interpolation routine tends to smear the high latitude

boundary, in Figure 2 by about 3". Figure 3 shows the production and

loss rate profiles for noon at southern midlatitudes. The peak produc-

tion of O*(-'P) occurs near 170 km with photoiontzation the major
source. The dominant loss mechanism above 280 km is radiation.

and below 280 km it is collisional deactivation by N.,. The combina-

tion of these processes results in the emission peak being formed at

approximately 260 km.
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Fig. 2. Three-dimensional plot of the 7320 A _,olume emzssmn rate at the peak of the laver versus latitude and local time. for00

LIT. The calculatmns were done for conditions appropriate for November 28. 1983. 'l:he upper panel shows the same results.

but w;thout the alutude coordinate. *.e.. peak volume emission rate versus latitude and local time. The color code is on a log
scale, and the umts are photons.era '.s '



pRIGiNALPACEIC
OF,POOR,,J,JJU.KY

F,_rr et ai.: Midlautude tnterhemxsphenc Model ol 7320 A Airglow 67

600c

550['- ' _ ,6 ur :

400f.-

'°i ........ .o25012

2o_ i

_5_0.2 :0._ :0 0 ,0 _ _02 .... I03

O÷ (tp) PRODUCTION RATE icm3 $ ')

__as i

2,0f ) )
,oof // j \

10-,_ ,O._ 10-2. I0-_ 100 101 10,?. !93

O* lip) LOSS RATE (¢m J $ _)

Fig. 3 St)urces lal and sinks (b) of O-(zP) for the location

corresponding to 48°S at t 1:16 LT in Figure 2. Sources are photo-

a)mzation and photoelectron _mpact _omzanon Sinks are radiation

and quenching b_ O. N_,. and electrons.

-\t tv.d_,..z,ht the ,_ttuanon changes rapidly. The photolonization

peak rl_,e_ rapidly in alntude and the protluction rate falls sharply.

Figure 4 ,tl_w,, the production rates for 48°S at 22:23 LT. At this

nine the _iar zemth angle is 107 °. so that the high altitudes are

'.Hummated Vhere r, ,_ _econd peak at about 300 km due to trans-

ported local pimtoelectrons v, h_ch are produced during the ionization

proce_ _ hich created the upper peak. Radiative ions dominates most

ot the proitle M tov_ lantudes at midnight, the peak production rate

tends to zero at _ery high alntudes. When the production rate effec-

n,,el_ drop,, to zero ihese value_, are ommed m Figure 2. so as not to
oh.,cure the NIalII results.
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Fig. 4 Sources (a._ and sinks (h) of O+(:P) for the location

corresponding to 48°S at 22:23 LT in Figure 2.

Fig. 5. Vertical column integrated

surtace brightness (in Rayletghsl for

the same case _hown in Figure 2.
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In the winter <northemJ hemisphere the twdights draw closer

together hut the photochemistry, of the daytime and twilight 7320 A
emission is essentially the same as that described above. What ts

interesting to note here is that there is some pro< _ction of O *(2p,_ at

hi,.zh latitudes even at midnight. The source zs ,._pact mnization by

photoelectrons from the sunlit conjugate hemisphere. The comugate

photoelectron source produces a column integrated surface bright-
ness of 2 to 3 R of 7320 A emission.

Figure 5 shows the global map of the 7320 A intenmty tot the same

case as Figure 2. This is what would be seen bv an instrument took-

mg straight down at the Earth for a fixed UT. The midday intensities

in the winter hemisphere are slightly larger than those m the summer

hemisphere. This is because the winter hemisphere ,s somewhat
colder, and radiative loss dominates to a lower altitude.

Summary.

We have reported the first results of a midlatitude interhemispher-

; ',' coupled model of the 7320 A airglow. These results show the

, ,nal and seasonal variation for conditions representative of near

solar mtmmum. The magnitude and extent of the conjugate photo-

electron source is quantified, together with the sources and sinks at

_elected times. In another paper [Ton" et al., 1989] we show further

details of the longitudinal and sotar cycle variations. This model

allows three-dimensional maps of any atrgiow emission to be gener-

ated, Any line of sight geometry, can be projected through these maps

and the volume emission rate integrated along the viewing direction

t, ruble compansons with observation. A three-dimensional

perspective of airglow emission rates or brighmesses is of relevance

to the interpretation of measurements taken from an orbiting vehicle.

A satellite flying in a circular orbit through the topology repre-

sented in Figure 2 would observe large variations in emission

through the structured regions. Semi-global maps of the type pro-

duced here provide rapid insight into the sources of the vanabitity.
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ABSTRACT

Emissions in the vacuum ultraviolet of the Lyman-Birge-Hopfield

(LBH) bands of N2 have been observed at night from the S3-4 spacecraft

and on Spacelab i. Conway et al. have reported that the intensity of

the LBH emission observed on S3-4 in the nadir varied approximately as

[N2] s with altitude, indicating a vehicle-atmosphere interaction.

Observations were made at right angles to and into the velocity vector

(ram) on Spacelab i. The LBH intensity in the ram direction shows a

factor of 3 to 4 decrease with respect to the 90 o case which were taken

two days earlier. The latter observations also suggest that the N 2

Vegard Kaplan bands occur simultaneously with the LBH. The Shuttle

LBH intensities are brighter than those observed on S3-4 by several

orders of magnitude. The following model is proposed to account for

the above observations.

N 2 striking the vehicle surface is excited to vibrational levels

nearv= 13, allowing the exothermic surface reaction N2(X)*+ O9 NO+

N to proceed rapidly, thereby producing N in abundance on the surface.

Surface recombination of the atomic nitrogen leads to the formation of

vibrationally excited and electronic states of N 2 including N2( A3_÷ u)

v : 9 to 13 (7.6 to 8.2 eV) which we shall designate N2(A)* After

thermal accomodation on the surface, the N2(A)* desorbs into the local

Shuttle environment. The long-lived metastable N2(A)* component is

then collisionally excited to the a1_ 9 state which radiates in the LBH

bands. In the ram direction there is a large enhancement in gas

1



concentration which results in attenuation of inflowing ambient N2

and O and possible collisional deactivation of the N2(A)* reducing the

LBH intensity. For collisional excitation of N2(A)* by ambient N 2

the net altitude dependence is " [N2] 3 above 200km altitude, changing

to " [N212[O] at lower altitudes in agreement with this behavior seen

in the $3-4 data. The S3-4 spacecraft intensities are smaller than

the shuttle intensities because of the smaller spacecraft size, and

because of increased attenuation at the lower altitudes, and possibly

due to different reaction rates for different surface materials.



i. INTRODUCTION

Conway et al. (1987) have reported observations of vehicle

induced emission in the Lyman-Birge-Hopfield (LBH) bands of N 2 on the

S3-4 spacecraft. TheN2(a1_g) state, from which the LBH bands arise,

requires 8.6 eV for excitation of the v = 0 level and up to 9.75 eV for

excitation of the higher lying levels below the dissociation

threshold. There is no identified source for these bands in the non-

auroral nightglow. Figure 1 reproduces the results of Conway et al.

for the altitude variation of the integrated band intensities between

1400 and 1700 A for nadir viewing. They report that the intensity

varies with altitude as [N2] 3 (or [N212[0]). They demonstrated that

if the source mechanism is a three-stage excitation process involving

the surface, then the expected LBH intensity would be -16 orders of

magnitude short of explaining the observed intensities.

Observations of vacuum ultraviolet (VUV) emissions were also

made by Torr et al. (1985) on the Shuttle with the Imaging

Spectrometric Observatory (ISO). Observations were made in the

nadir and at 90 o to the velocity vector at night, the ram at twilight,

and the wake in daylight. For the nadir and 90 o observations, the

Shuttle was flying in an upside down airplane mode, i.e. with the nose

(x axis) pointing into the velocity vector and the bay (-z axis)

pointing in the nadir. Under these conditions the ISO views out along

the -z axis when the scan mirrors are stowed out of the field of view.

(The open mirrors are stowed £ 180 o to the closed position). The 90 o

to ram data were made looking under the -y wing using the scan mirrors

3
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to point the field-of-view of the instrument between 90 and 250 km

tangent ray height. The ram data were taken with the scan mirrors

stowed and the line-of-sight of the instrument pointing directly into

ram, i.e. with the -z axis of the Shuttle into ram.

Intensities were observed to be brightest at 90 o to ram,

decreasing in the ram and wake directions.

Figure 2 shows an example from Torr et al (1985) of the vacuum

ultraviolet spectrum observed on Spacelab 1 at 250 km at night on

December 5, 1983 at 900 to ram. Curve a shows the synthesized LBH band

system for comparison. The maximum allowable intensities are

constrained by the lower values observed at the shorter wavelength

side. Thus, it is apparent that the VUVglow observed on Spacelab 1

cannot be attributed entirely to the LBH bands. Curve b shows the

effect of including the Vegard Kaplan bands of N2, where the maximum

allowable intensities are constrained by the lower values at both the

short and long wavelength sides of the measured spectrum.

Torr et al. (1985) also identified the presence of strong NO

bands at night at wavelengths longward of those shown in Figure 2.

Figure 3 shows the effect of including the NO _ and _ bands which have

transition characteristics which allow the system intensities to peak

near 1650 A. Thus it is evident that a plausible synthetic spectral

fit can be achieved with a composite system of bands comprising N 2 LBH,

VK and NO E and _ bands.

It is clear that the spectral identification of the shuttle VUV

emissions may not be unique, because there is no one-to-one match with

4
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Figure 2: An example of the vacuum ultraviolet spectrum observed on

Spacelab 1 at 250 km on December 5, 1983 at " 130 o W, at 21 hours local

time, solar zenith angle= I07 °, at mid-latitudes. Amirror was used

to view the 90 o direction across the -Y wing of the Shuttle. Curves a

and b are synthetic spectra of the N 2 Lyman-Birge-Hopfield and Vegard

Kaplan band systems respectively. Curve c shows a composite spectrum

of these two systems.
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discrete spectral features, but only with the general envelope of the

observed VUVpseudo continuum glow. Thus the identification of the

VK emission is not definitive. Detailed fitting may not be possible

because it requires several grating steps to cover the full VUVrange,

and temporal variations which are severe may distort the relative

emission ratios. Given the [N2] 3 dependence of the glow indicated by

the S3-4 data it is evident that relatively small changes in the N 2

concentration due to gravity waves for example, could cause

significant changes in the VUV emission because of the strong non-

linear dependence.

If the presence of the VK bands is accepted, one is led to the

conclusion that there could be a significant far-field component to

the glow. This conclusion is based on the fact that the ISO field of

view was directed away from shuttle surfaces, and for the viewing

geometry in question the instrument itself was shielded from direct

interactions with the ram flux by the Spacelab 1 module and the aft

bulkhead. Slanger (1986) has presented evidence which strongly

suggests that shadowing of surfaces from exposure to ram

significantly reduces visible surface glow brightness.

For comparison, Figure 4 shows the VUV emission observed in the

ram direction at 250 km on December 7, 1983. The most striking

feature of these data in comparison with that shown in Figures 2 and 3

is a reduction in intensity of theN 2 and NO bands by of a factor of 3 to

4.

Given the fact that the inferred intensities for the VK system

5
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The spectra were taken under similar geophysical conditions to those

shown in Figure 3, except that the local time was -04 hours which

corresponds to twilight conditions.



('3kR) can be used to roughly obtain the column abundance of N2(A)*,

which we find to be large ('6 x 109 cm-2), we investigate the

plausibility of collisional excitation of desorbed N2(A)* by the

influx of ambient 0 and N 2 as a source of the LBH emission. We show

that the apparent decrease in N 2 LBH (and VK) emission in the ram

direction, may be due to the attenuation of the incident ambient flux

of N 2 and O and quenching of N2(A)* by O and N 2 re-emitted by the

surface. The concentration of O and N 2 is believed to be

significantly enhanced on the ram side of the Shuttle (Rantanen and

Gordon (1987). We consider only excitation of N 2 emissions in this

paper, and will deal with the source of NO excitation in a future

paper.

o THE MODEL

We investigate the production of LBH emission via the reactions

O + N2( A3_+u)shut --_ N2(al_g) + 0 (i)

N 2 + N2(A37+u)shut -_ N2(at_g) + N 2 (2)

followed by:

N2(aIHg) -_ N2(XI_+g) + hy(LBH)

N2(A3_+u)shut --_ N2(Xt_+g) + hv(VK)

(3a)

(3b)

whereN2( A3_+u)shut refers to metastableN z desorbed from the vehicle

surface and the usual notation (O,Nz) refers to the ambient gases.

6



3. THE PROPOSEDLBH GLOWMECHANISM

The desorbed vibrationally excited N2(A)* internal energy peaks

between 7.6 and 8.2 eV. Both $3-4 and Spacelab 1 observations

indicate LBH emissions arising from v' = 0 to 6, that is from

vibrational levels lying between about 8.6 and 9.7 eV. The mean

relative energy in the center-of-mass system available for processes

(I) and (2) is "3.9 ± 1 and "4.6 ± 1 eV respectively. Thus, both

processes are energetically capable of exciting N 2 states above the

a1_ state.
g

The volume emission rate for the LBH system, n, at a distance s

from the surface is given by

(s) = 7_¢jEFj (s) [N 2 (A)*] s (4)

where Fj (s) represents the total incident flux of ambient neutral

species j, CjE represents an excitation cross-section for collisions

with the jth particle species where j = 0 and 1 designates O and N 2

respectively, and [N2(A)*]s is

vibrationally excited N2(A)*

vehicle/instrument surface at s o .

the concentration of desorbed

at a distance s-s 0 from the

The total LBH irradiance is given

by

7



ILBH

¢0

= In(s)ds =

S O

{F(Nz) s¢Ig

S
0

+ F(O) s_0E) [N2 (A)*] sdS (5)

where tie and ¢0E are cross-sections for collisional excitation of

N2(A)* to N2(a ) by N 2 and O respectively. The flux F(X) s is given by

-Tax -Taj

F(x) s = F(x)_e or Fj = Fj_e (6)

where F_ refers to theunattenuated flux, x refers to O (j = 0) or N 2

(j = i), and Taj represents the attenuation depth at a point along a

given line-of-sight s defined by

O0

7aj = Ii_j ini (s)ds'

s

(v)

where s' is ina direction antiparallel to the velocity vector, _ji is

the collision cross-section for species j and i and ni(s ) is the

induced gas concentration of the i th constituent in the environment of

the vehicle at distance s from the surface. Equation (6) is

formulated under the assumption that after one collision, incident O

and N 2 will no longer be capable of excitingN2(A)* to the a1_g state.

To evaluate the viability of the proposed excitation mechanism we

first consider the case where the attenuation of the incident flux by

the gases comprising the vehicle environment is negligible, i.e.,

where Taj << i. Under these conditions, (5) simplifies to



ILB H = j_Fj_o'jE
(8)

= ZFjmo'j E[N2 (A)*] col (9)

where [N2(A)*]¢01 is the column concentration of vibrationally

excitedN2(A), and subscript jmrefers to the unattenuated flux of the

jth species.

We use the Spacelab 1 measurements of the VUVVK band systems to

evaluate [N2(A)*]c01. Given that the LBH and VK nadir intensities

are -3.5 kR and 3 kR respectively and using the relationship

I = _Ai[Xi] (i0)

where I is the total intensity of a band system, A i is the Einstein

coefficient for all transitions from the i th vibrational level of the

emitting electronic state X, and [Xi] is the concentration of the i th

vibrational level, we evaluate the total column abundance of N2(A)*

from the intensities for the VK system, assuming an average lifetime

of 2 seconds based on the results of Shemansky et al. (1971) for low-

lying vibrational levels. Thus, we find that

[N2(A)*]c0 I z 6 x i09 cm -2 (11)

We use (9) and (ii) to estimate the collision excitation cross-

section needed to account for the observed LBH emission.



_ ILBH
_E £ (12)

F_[N2(A)]c01

Where _E is an intensity weighted cross-section, and F_ is the total

ambient neutral flux. Using the MSIS model atmosphere (Hedin, 1987)

for the Spacelab 1 conditions, i.e. November/December 1983 at 250km,

jZFj_ = 1.3 x 1015 cm-2s -I

Thus,

_E >

5 X 109

1.3 x 1015 x 6 x 109

= 4.5 x 10 -16 cm 2

which does not appear to be unreasonable.

The obvious questions that arise are the following:

the source of the N2(A ) molecules? 2)

intensities weaker in the ram direction?

[N212[O]) altitude dependence arise?

i) What is

Why are the LBH and VK

3) How does the [N2]S(or

4. SOURCE OF THE N2(A ) GLOW

In principle, there are several possible ways of generating

electronically excited N2(A ) . However, all but the surface

recombination of atomic nitrogen can be effectively eliminated by

energy arguments (Kofsky, 1988). Surface catalyzed inverse

predissociation of N 2 appears to be the only process capable of

accounting for the highly efficient excitation of N2(A ) in high

vibrational levels. Reduction of available energy in the center of

mass system of the reactants, and the fact that a significant fraction

i0



of the kinetic energy must be shared with the surface eliminates the

direct excitation of N2 investigated by Conway et al. (1987) or impact

dissociation of N 2 (suggested by Green, 1984) as sources of

electronically excited N 2 or of atomic nitrogen. The available flux

of ambient thermospheric nitrogen would require unrealistic

efficiencies for N-N recombination.

Meyerott and Swenson (1990) have noted the importance of being

able to account for the observed anomalous vibrational distribution

of the LBH emission. They point out that direct recombination of N

into the a1_ 9 state via the AS_+ 9 surface should result in predominant

population of vibrational levels near v = 5 where the crossing of these

states occur.

In order to provide a comparison with our model we briefly

describe their approach. To explain the far-field vehicle glow they

propose resonance fluorescence scattering of EUVphotons which will

give rise to a1_g by cascade from higher lying singlet Rydberg states

of N 2. To initially populate these singlet states they invoke a

Rideal surface recombination mechanism in which one N is attached to

the surface and the second is ambient atomic nitrogen. The relative

kinetic energy of the latter provides the energy source needed to

access the singlet Rydberg states. It is presumed that the

transition probabilities from these states will be consistent with

dominant cascade to the v = 0 and 1 levels of the a1_g state.

Recombination can occur via either one or both of the AsE + or 7E ÷g g

ii



surfaces.

Swenson and Meyerott (1988) have also proposed the gas phase

reaction

N2 + O -_ NO + N (13)

as the main source of surface N, and their calculations suggest that

(13) could provide a sufficient source of N to account for the LBHglow

observed on Spacelab 1 and the S3-4 satellite. Because the branching

ratio from the singlet states to the ground state of N2 is about 30 to

i00 times larger than to the a1_g, strong EUV emission is predicted

together with the Herman Gaydon near UV bands associated with the

cascade process.

It should also be noted that the 5_÷ and 7_+ paths require one9 g

more step than theAS_ + in the recombination process In the case of
U

direct recombination into N2(A), one would expect high lying

vibrational levels to be populated, with possible partial surface

induced vibrational relaxation. According to Green (1984) some

fraction of the molecules will leave the surface in the N2(A ) state.

Currently it is believed that recombination should be preferred

through the 3_÷ channel because this state correlates directly with
U

the ground state atoms, and it is thought that laboratory observations

of emissions from singlet states are due to quenching of high lying

vibrational levels of the As_ + state (B. D. Green private
U

communication, 1989).

12



As mentioned above, the N2(A ) vibrational distribution observed

on Spacelab 1 is constrained rather well by the envelope of the pseudo

VUV continuum. The distribution required to fit the data shown in

Figure 2 is given in Figure 5. These values show that the N2(A ) must

be populated predominantly in v = 7 to 13. Also measurements of N2(A )

emissions from v' = 0 in the near UV preclude low lying vibrational

levels as a possible precursor. Although collisional excitation of

N2(A ) (v" ,> 0) to a1_g (V' - 0) is preferred from the Franck-Condon

perspective, transitions which violate the Franck-Condon principal

are not precluded for heavy particle collisions. Thus collisional

excitation from high lying vibrational levels ofN2(A ) could populate

low lying vibrational levels of N2(a ).

As stated earlier, the only mechanism capable of producing

N2(A)* is surface catalyzed recombination of N. Thus, the next step

is to identify a source of N that will yield the correct altitude

dependence of the LBH emission. We consider the surface reaction of O

,
and N2* where the following sources of O and N 2 are proposed.

(0

O(-5eV) + surface --_ Osurf (14)

N2('9 eV) + surface N2(X) v>1 s + _< 5.5 eV (15)

followed by the exothermic surface reactions

k I

N2(X) v>1 3 + Osurf _ NOsurf + Nsurf (16)

13
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k 2

Nsurf + Nsurf _ N2(A)*surf (17)

followed by desorption of the N2(A)* and Reactions (i) and (2). The

species is probably long lived with a radiative lifetime of the order

of a second.

In this model, the N2(A)* could be formed on the surfaces of the

shuttle wings. Then the desorbed N2(A)* could flow through the field

of view of the instrument when viewing over the wing in a direction 90 o

to ram.

Alternatively, it is possible that direct impact of surfaceOand

N 2 by the flux of ambient O and N 2 could also result in the production

of N and NO, however, this will result ina different scale height for

the observed LBH and VK emissions.

Processes (15) and (16) need to be highly efficient in order to

result in significant production of N. The ram flux of O will be the

major source of surface O needed in (16). As pointed out by Kofsky

(1988), the probability forN recombination ranges between 1 and 10 -6

depending on surface material (Evenson and Burch, 1966; Halpern and

Rosner, 1978, 1982).

The production of N, Q(N) is given by

Q(N) = k I IN 2 (X)*surf] [Osurf] (18)

It will become evident that the processes which control the

14



concentration of N2(X)*surf and Osurf will determine the dependence

of the LBHglow on altitude. In Section 5 we demonstrate that an [N_] s

dependence requires that [N2(X)*surf ] scale linearly with ambient

IN2] and that [Osurf ] scale as [0] t/2. Here we show that these

dependences can be provided in terms of likely processes. If we

consider the steady state production of N2(X) surf by ambient inflow

and loss by (16) and desorption, then we can write:

EIF(N2) = (k1[Osurf ] + J1)[N_(X)*surf]

where J1 represents a desorption coefficient (units: s -I)

(19)

If J1 >> k1[Osurf],

(which is possible because of the internal excitation energy of N2(X)*

which may be available to overcome the surface bonding energy)

_IF(N2)

[N 2 (X)*surf] - (20)

J1

which satisfies the required dependence. This condition implies

that Reaction (16) is a major source of N but a minor loss forN2(X)*

If we assume that the primary loss mechanism for surface 0 is

recombination (at least for Shuttle surfaces), either directly or

catalytically such that the net effective process can be represented

by

k_

Osurf + Osurf _ O2sur f (21)
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and if the source of Osurf, Q(O), is the flux of ambient O, F(O), then,

[Osurf]

 0F(O)

ks

1/2

(22)

The assumption that surface recombination of O is a major loss

process for O is supported by the well known fact that satellite borne

closed source mass spectrometer measurements of O yield both O and 02

signatures when O is the dominant ambient species present. Thus the

atomic nitrogen production rate (18) can be written as

Q(N) = k I

EIF(N 2 ) EoF(O)

Jl k3

I/2

= = [N2][O] I/2 (23)

where

--(T I + T0/2)

/2 k_3 )e= klv3 /(J1 (24)

where Tj =

s

¢j inids'
(25)

from (7), and s' is always anti-parallel to the velocity vector.

Subscript j refers to the incident particle and i to the attenuating

constituents.

If Reaction (16) is sufficiently exothermic desorption of N may

be the dominant loss process and assuming state steady state

16



conditions apply,

Q(N) = J2[N]

Then

Q[N]
[N] -

J2
(26)

and the production rate of desorbed N2(A ) from (17) is given by

N)] -(2TI + 70)= 62k 2 -- = 7[N212[O]e (27)
F(N2A) so _ J2 ]

where, using (24)

c_ 2 6061 62 1 2

= 62k 2 = (28)

J12J22k3

E 2 is the yield of desorbed N2(A)*.

Once the N2(A)* desorbs from the surface it may be quenched by

constituents of the gas cloud. If quenching of N2(A)* is negligible

then the concentration of N2(A)* close to the surface is given by:

-(27 I + 70)

[N2 (A)* ] a [N212[O]e (29)

It is known from laboratory and aeronomical data that N2(A) v>o is

quenched byO, and 02 (seeTorr andTorr, 1982; Piperet al. 1981; Sharp

and Torr, 1979). Quenching of N2(A)* by NO is also rapid (6 x 10 -11

cm3s-1). Thus, it is reasonable to assume that N2(A) v>7 will be

quenched both vibrationally and electronically. It is likely that

17



all major constituents of the vehicle gas cloud could quench the

N2(A)*. The fraction of the N2(A)* flux that is quenched will be

determined by the relative magnitudes of the transport and chemical

(or quenching) lifetimes.

Having computed the desorbed flux of N2(A)* it remains only to

include both the effects of transport and quenching on the

distribution. To evaluate the effects of both transport and

quenching onN2(A)* we solve the continuity equation (and dropping the

superscript *)

a (N2A) 1
- q - B[N2A ] - --?(#G)

at G
(30)

where q = gas phase production rate of N2(A ) = O

= N2(A ) loss frequency = Zkin i + Ark

k i = quenching rate coefficient for species i = _ivi

Ark = Einstein coefficient for the VK system

n i = concentration of the i th constituent of the vehicle

gas "cloud"

# = vT[N2A ] = N2(A ) flux at point s

v T = is the bulk velocity of desorbed species which is

characterized by the temperature of the surface at

which desorption occurs

G = geometrical function which characterizes the effects

of the radial outflow of gas

t = time

For purposes of deriving analytical solutions to (30) to

facilitate discussion, we assume steady state conditions,

18



1
6[N2A ] = - --(Gv# + #VG)

G

(31a)

or

v[N2A ] vG
-S/v T = + --

[N2A ] G

(31b)

If V = d/ds for a given viewing direction and

B = ._kin i + AVR = VTiEeqini
I

+ AVK _ _qnV T + AVK
(32)

where _q is a density weighted quenching cross-section

n = _n i
l

Upon integrating (31) and adding attenuation of the incident

flux to B we obtain

[N2A]s =

-(Tq + 2T I + To)

[N2A]s0Go e

S$

(33)

S

where Tq = I(_qn + AvK/VT) ds

S

0

(34)

and 7 I and 70 are the attenuation depths for the incident N 2 and O

respectively.
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. THE ANGULAR DEPENDENCE OF THE SHUTTLE VUV GLOW

Using (34) in (4) the LBH volume emission rate is given by

-T j (s)
._o'j EFj _[N2A ] s 0G0 e

_LBH(S) = J (35)
G

$

which can be written as

7j(s) =

S

SO SO

¢0

i_¢oiNi ds' (36)

0

-Tj (s)
_j (s0)G0e

Gs

(37)

The LBH integrated emission rate can be readily evaluated

I
eT](s) ds

s o

where, as mentioned previously, s is along the line of sight, and s' is

antiparallel to ram. The attenuation terms represent the following

in order of appearance:

I) Attenuation of the incident ambient flux of 0 or N 2 (j =

0 or 1 respectively) between m and point s

20



2) Quenching of N2(A)* between the surface and s

3) Attenuation of the ambient N2 flux to the surface which

produces N 2 (vib.)

4) Attenuation of the ambient O flux to the surface which

produces surface O.

In practice, (38) is evaluated numerically for any given viewing

direction. However, since it is relatively straight forward to

evaluate the case analytically for the line of sight directed into

ram, and since this case is the most relevant for our discussion, we

will utilize this case as a point of departure for further discussion.

First we define

_jn = _j ini (39)
1

For ram viewing (36) then becomes:

Co cO
S

- -f -( - -(T i (ram) = _J nds + _q nds + (2_ I + _;01 nds

S SO SO

(40)

i.e.

where

_j (ram) = _aj (s) + _a(s) + 2_ I + _0

nds = N, the total ram column density of the

vehicle gas cloud
SO

(41)

(42)

Thus (38) becomes
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I

I -Tj (ram)ILH H (ram) = _nojGo e
]

so Gs

ds

where _0j = n0j (s0) = Fj_jE[N2A]s0

m I

If G s = s 2 and _j : _q

-Tj(ram)

ILBH(ram ) = _n0js0e
J

where s o is of the order of the vehicle dimensions (L), and

Tj = T 2 + T O + 2T 1 where T 2

(43)

(44)

(45)

(46)

CO

l

= Taj + Tq = _aj Inds (47)

S0

The attenuation depths for the incident O and N 2 fluxes depend

critically on the surfaces underlying the line-of-sight of the

instrument. For example, if the line-of-sight runs parallel and

close to a large surface such as the Shuttle wing, the flux of desorbed

N2(A)* will be largest if the wing surface is normal to ram. However,

this will also result in large values for all the attenuation depths,

yielding a large value for 7j. On the other hand, if the wing edge is

directed into ram, as in the airplane mode, the flux of desorbed N2(A)*

and the attenuation factors Yaj, ¥0 and ¥I will be reduced roughly in

proportion to the area exposed directly to ram. The attenuation of

incident ambients will decrease as exp [-(¥aj + To + 2TI)], that is

22



exponentially with respect to the decrease in the flux of N_(A)*.

Similarly, when the line of sight is directed into ram, there is a

large buildup of quenching/attenuating constituents which may cause

the attenuation and quenching terms to overwhelm the enhancement in

N2(A)*.

In what follows we report the results of a preliminary assessment

of the magnitude of these effects for the databases discussed in the

introduction.

From (38) we see that the angular dependence of the emission will

depend on the attenuation depth ?j (e) which varies as the column

concentration N of desorbed species (see (40) for example) which can

be obtained via detailed modeling of the vehicle "gas cloud" dynamics,

which is currently underway and will be reported at a later time.

In order to estimate values of Tj (6) for e = O and 90 o we

use the calculations of Rantanen and Gordon (1987). Their results

typically indicate a decrease in column density from ram to 90 o (for

the vehicles studied) of about an order of magnitude.

If _a0 = _al = ;s = _z = _q : 2.5 x 10 -15 cm 2 for example, the

N2(A ) quenching rate coefficient byN 2 is given bykN2 : vT_ A : 4 x 104 x

2.5 x 10 -15 = 1 x 10 -I° cm3s -I which may not be unreasonable for high

lying vibrational levels.

Thus Yj(ram) : 10-14 N = 1.2 and the column density of the gas

cloud needed to account for the attenuation of the ram flux is 1.2 x

1014 cm -2. If L : 30m, (see(46)) the near surface gas density is 4 x

10 I° cm -3 which is reasonable and corresponds to a ram enhancement of a

23



factor of 27.

(Note the Rantanen and Gordon (1987) ISEM model predicts a non-

linear increase in gas density with a few meters scale length near the

surface, which can severely affect the attenuation of molecules en

route to the surface.)

Table 1 provides a summary list of approximate numerical values

required for relevant parameters if the proposed model is to be

viable.

6. ALTITUDE DEPENDENCE OF THE $3-4 GLOW

ANALYTICAL FORMULATION

Differentiating (46) with respect to altitude h, for a single

species and simplifying notation, we obtain

dl dl o -T -T dT

- e - Ioe --
dh dh dh

(48)

where I 0 = n0 L, the unattenuated LBH intensity from which we deduce the

scale height H for the LBH emissions, namely,

-I 1 dI 1 dI 0 dT

-- -- (49)

H I dh I o dh dh

i.e.

1 1 1

H H o He

(5O)

where H o is the scale height associated with no defined by (51)
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TABLE 1

SPACELAB1 PARAMETERS

90 o DATA

F(N2 ) = 4.5 x 1014 cm-2s-I

-2 -i
F(O) = 8.5 x 1014 cm s

MSIS 1986

AT

250 km

[N2A]* = 6 x 109 c m-2 (measured)col

F(N2A ) = 8.7 x 1010 cm s

N 2 (A)/N z = 1.9 x i0-4

N2(X ) v _ 13/N 2 = 0.08 ASSUMED

N/N2* = 0.i ASSUMED

N2(A)/N RECOMB. = 0.02

N2(a)/N2(A ) = 0.04

-6
LBH PHOTONS/N2 = 7.6 x i0

VK PHOTONS/N2 = 6.6 x i0 -6



From (35) and (29)

Thus

no _ [N2]2[O]nj (nj = [O] or [N 2] (51)

1 3 1

H0 HN 2 H0X

for nj = [N 2 ]
(52a)

and

1 2 2

- + -- for nj = [O]

Ho HN2 Hox

(52b)

where Hn2 and Hox are the scale heights of atmospheric N 2 and O

respectively. We now evaluate H 7.

From (40) and (41) we approximate Tj by

I7 = _ nds =

J

s o

_noL
(53)

and

dT _Ldn o

dh dh

(54)

where

-z n

n o = fnrTre

T

(55)

Z n -:

h

dh

Hn

hr

(56)
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Ht
(kin)

180

190

2oo

220

240

[o]
(ore-3)

5.50xi09

4.34xi09

3.40xi09

2.20xi09

1.50x109

TABLE 2

Height Dependence for N 2 Collisions

{Reaction 2)

[N2_ n m

(cm-) _0 i-_0 :I 3-_ I

5"60XI09 1.10 -0.I0 1.12 1.9

3"70XI09 0.87 0.13 0.74 2.3

2"50X10g 0.68 0.32 0.50 2.5

1"20XI09 0.44 0.56 0.24 2.8

6"00XI08 0.30 0.70 0.12 2.9

Dependence
for 0 Collisions

[N2]°'9[o1O.9

EN2] _. 3[o] _.

IN 2] _. S[Oj _ '

[N_] _. 8 [o 3 1

[N211'9[O]_,?

Height

Ht

180

190

200

220

240

LBH

ALT DEPENDENCE

[N2]_'9[O]-O.z

EN212'3[o]O._

[N232"S[o]O,3

[N2]2"eEO]O,e

[N2)2'gEojO.?

(Reaction i)



n r = the total ambient density at reference height h r

H n = the mean density weighted scale height of the ambient

gas

T = atmospheric temperature

f = ram density enhancement factor at s o

We assume that the atmosphere is isothermal (i.e. T = Tr) and

obtain

1 dT

H T dh

-f_Ln0dz r

- -- (57)
dh

= -f_Ln o

(58)

Hn

From Rantanen and Gordon (1987) for L : 6m (assumed for the S3-4

spacecraft), f : 30.

m

Recall _ = _i : 10-14 cm2
[

Thus f_L : 2 x i0 -z0 cm 3 for the $3-4 spacecraft.

(59)

Table 2 gives average concentrations for O andN 2 fromMSIS 86 as

a function of altitude for the $3-4 spacecraft.

Equation (57) can be written in terms of the individual number

densities of O and N2, i.e.

1 _ I_[O] [N2]

--=-f_L ,--+

H_ _H0x Hn2

(60)
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-- (61)
Hox HN2

Using (61) with (52) in (50)

H

(3 - _z) + (i - _0)

Hw2 H0x

(62)

where _0 = fcL[O]

_ = f_L[N2]

Equation (62) allows the altitude dependence of the LBH glow to

be expressed in the form

ILB H [N2]m[o] n

where

m = 3 - _I and n = 1 - _0

Table 2 also lists values for _0, _I, m and n as a function of

height for the S3-4 spacecraft. Figure 6 shows a comparison of the

intensity of the computed LBH emission compared with the S3-4

observations. Here the intensities have been scaled to the

measurements at "200 km, in order to evaluate the altitude dependence

predicted by the model, which is reasonably good. If the quantity f_L

has been overestimated, i.e. _0 and _I are too large, then the

calculated scale height will approach the high altitude limit of

[N213[O] more rapidly than observed. If on the other hand _0 and _I

have been underestimated, then there would be indications of a more
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Figure 6: Comparison of estimated theoretical intensities based on

the model results with the S3-4 observations of LBH glow as a function
of altitude.



rapid increase in scale height below "200 km, which would ultimately

lead to the formation of a peak in glow brightness, because of the

effects of increased attenuation.

It should be noted that these calculations do not take into

account possible surface saturation effects. This will be done

during the next phase of the work when the emission will be

comprehensively numerically modeled.

7. SURFACEGENERATEDLBH GLOW

Equation (17), namely

Nsurf + Nsurf _ N2*surf (63)

also allows for the direct production of N2(a1_g) on the surface. The

radiative lifetime for the a1_g state is "i00 _s which yields an e

folding distance of 4.4 cm, which would not be observable by the ISO,

but could be the mechanism responsible for the S3-4 glow. The scale

height dependence of the glow is then given by (27) as modified for

N_ (a), namely

F(N2a) so = E3k2(Q(N)/J2) 2

-(271+70 )

= 7a[N212[O]e (64)

where

and

_a = WE3

_2

E 3 = efficiency for the production of N2(aZ_g) by (17)

(65)
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-(2TI+TO)
_LBH = 7a[N212[O] e

(66)

VT

Thus, the LBH glow will vary as [N212[O] at heights when

attenuation of the incident O and N 2 ambient flux is negligible,

changing to a larger scale height when attenuation becomes

significant at lower altitudes, which is also qualitatively

consistent with the S3-4 observations shown in Figure I. It is

possible that surface materials on S3-4 result in negligible

production of N2(A ) and with a small production of N2(a ) accounting

for the lower intensities than those observed on Spacelab I.

CONCLUSIONS

Observations of vacuum ultraviolet emissions (VUV) made by the

Imaging Spectrometric Observatory (ISO) on Spacelab 1 in 1983 and the

S3-4 spacecraft are interpreted in the light of the following proposed

model. Key features of the observations include a decrease in VUV

emissions in the ram direction on Spacelab 1 compared to 900 to ram,

and an [N2] 3 altitude dependence on $3-4.

It is argued that since the ISO optical surfaces were shielded

from the direct ambient neutral flux, the observed emissions must be

of far-field origin. The Spacelab 1 observations could be

synthetically fitted with the following bands: N 2 LBH and Vegard

Kaplan, NO E and _. Because the LBH radiative lifetime is short

(~lOOKs) and because of energy considerations, it appears that

collisional excitation by the inflowing ambient N 2 or O of a long lived
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excited state of N2 to the aZ_g state is needed to account for the LBH

component of the glow. The metastable N2(A3_ +u) species not only

meets this need, but it also accounts for the presence of the inferred

VK bands. Interpretation of the NO emissions is deferred for a later

paper. Based on the measured LBH

section for excitation of N2(A ) to

10 -16 cm 2"

and VK intensities, the cross-

N2(a ) is estimated to be ~ 4.5 x

A mechanism is proposed for the surface production of N2(A ) by

inverse predissociation of surface N. To provide an adequate source

of N which yields the correct altitude dependence observed on S3-4 it

is suggested that vibrationally excited N 2 recombines on the surface

with O yielding NO and N as a product. The vibrational excitation

which is needed to render the reaction of N 2 with O exothomic is

generated by the impact of N 2 with the surface. The N2(A ) formed on

the surface then desorbs into the cloud surrounding the vehicle. The

N2(A ) flux is estimated to be -10ZZcm-2s -I for the Spacelab 1

conditions.

To explain the angular dependence of the glow observed on

Spacelab i, it is argued that attenuation of the ambient flux of N 2 and

O though the gas cloud plays a significant role. First, the N 2 and O

that must reach the surface to produce surfaceNis attenuated, and the

attenuation of each of these streams enters multiplicatively into the

surface production of N2(A ) . Second, the N2(A) in the gas cloud may

be quenched. Third, the incident N 2 and O impacting theN2(A ) in the

gas cloud is also attenuated. The net result is an accumulation of
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several attenuating terms which become significant in determining the

angular dependence of the glow. When the Shuttle flies with large

surface areas such as the wings facing into the ram direction, there is

a large buildup in the concentration of desorbed gases around the

vehicle, which could result in significant attenuation. When the

Shuttle flies in an airplane mode, there is an exponential reduction

in attenuation (-an order of magnitude).

On Spacelab i, the ISO instrument viewed directly out of the bay

when the -z axis was directed into ram, and over the -y wing when the

shuttle flew in the airplane mode. The larger intensities observed

in the latter case are consistent with the exponential decrease in

attenuation resulting in larger intensities at 90 o than in the ram

direction.

This model was also applied to an analysis of the $3-4 data which

covered an altitude range from .180 to 240 km. It is demonstrated

that at high altitudes, when attenuation is less significant, the

altitude dependence of the LBH glow reduces to [N2]S[o] or N22[O] 2,

and at low altitudes this changes to an [N2] or [N2][O] scale height

depending on whether excitation of the a1_g state is by N 2 or 0

collisions respectively. A simple model calculation, with

theoretical intensities normalized to the S3-4 observations at 200km,

yields reasonably good agreement for the variation of the LBH glow

with altitude.
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4 PLACES I=_KED K

Z

Y

.__PREPfd:IE HOLE AND INSTALL HE.L]-COIL INSERT
=11q1-4CN _375 (.25_28 X 1.5D LONG) PER l,_33537.

TAP DR,ILL TO GO THRU

PLACES HARXED P

/.°437 .4_

1

t_---l_CJl IX / t

\
PREPARE HOLE AND INSTALL HELl-COIL INSERT "-'-'_

"]|85-_N B138 (o6-32 X ID LONG) PER HS335,37.
TAP DRILL TO GO THRU ONE
3 _S I,t_KED H .141 THRU

6 I,IOLES
1,4_RKEO J

SECT] ON Y - Y

4.705

0 /
I

d

.ti x 45" / L: 5.8f_

7.B504 PLRCES

LR .25B TYP

f R. BGB TYP

LIfl / -T-,_'_,,
• "_ t_ -,Jr_J

illI
•-,=.-'jJ .,.,,, ...,o<>/ - -,-,.-, :1

o8o_ r'------ s.7,,,,- . "I
• I _ 4.T44 -_

=.,,, .,,-,,,.,--, I I I"---_'_,.%,--'_
,2,O_ES \ ' I I I I --'l____t'--
I,ef_(ED H _ 4 I I I I _ .9Z'I I'--

L___.___...'_ _..Y,___.__.. _ ._E_

I_, -_-_'-_-u--_ff_ .vi_F,--:_ -__,--

llj '

/ I I _'--" z'7_m-'-"
/ I--'T2;"--:

_ 5°565

7,5_
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FOLDOUT _:,Pj_V,:-_-__

5 I 4 I ] I 2 !

;9

4.

.42S

1

)

PREPARE HOLE AND ]NSTALL I'ELI-CO] L INSERT

_'1185"_CN B]38 ("6-32 X ID LONG} PER HS33537.

TAP DRILL TO GO THRU ONE WW.L
4 PLACES I_ARKED N

FI

• 42

• 87

.38 J

.425

5.410

6

4.15

Y

I
t.lOg

& INSTALL HELl-COIL INSERTS _FTER FII_L
FINISH.

5.1 FINI_tl 0tEMICN. FlU4 _ HIL-Co5541 CLASS 3.
5.1 PAINT FLAT 9L_K PER SR 67q"1il74

EXCEPT SURFACES I'IARXF.D G. -,
014 T PAl NT FROM _W.L It01..(S.

4. m STRESS RELIEVE PER ,_il842.
4.1 ROU_ mCHIIE 10 _TI_N ._ OFRUSHED SLIIFN_..
4.2 STRESS REL] EVE PER SRB42 P_R 3. 1.50
4.3 SEMI-FIN_ MRC_NE TO MTHIN .BI5 |_

OF FIMSltlEO SL_ACF.
4. 4 T(MPE_TURE Ci1_JE PER _1642 P_R _J. 51)
4.5 Fl_511 PI_H]NF_

ALL DIMENSIONS APPLY AT GrF(2rc).

2. PIECrMARK P_qT NL.(TAG OR _.PER SC41ZII_
METMOQ 4.

I. MJRK_P PER _
NOTESI

mime _ _ ...... _ ,-- ,Ti..--am. r Im 11) iP#km_

== _ II _. tJ -'_---'_.-'-'' "" I'-- PR] MARY SENSOR PANEL

m_m= _ e_._._ , !.I I 1 I ..... _amun_,,. m_lmmiu I

----------- _ l _ '1o,-,.,1=) l, -_........... 14r_lct3 10011Oet
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FOLDOUT FRAM': /.

PREPARE HOLE AND INSTALL HEL]-COIL INSERT

I I _ _'_8---'1 r 325
3. 32q

I 8q9 1.188

PREPARE HOLE AND ] NSTALL HEM-COIL INSERT

ellq]-4CN g375 (.258-28 X ].5D LONG) PER _33537.

TAP OFtILL TO GO THRU

2 PLIES H_RKED P

Y
--..--41

1. 157

• 688 -------

• 588

7. B83

Z

L
R . ]38
6 PLACES

• 572 ---'-
---ii

___ 4. 2573. 657

]. 7=.7 .,---

-- -i

V

_J

!

L
1.45

3. q57

/ ---- 7. 48(
/ 3 SURFACES _RKED V TO BE _ ------8,.

/ COPLANAR TO _ V] THIN. ,,,4 X '

I I I I.i+U21al / t I I. ea82tAI n.l_sil----- .515--_ % _ ---

I _/ _ _P,A"ESI .... I\_ r"
•_ i a / _ ! I I_______I.

__ _ / q ., ___ __ i---o,  -7i t
tit /

"--'z'°'4'q--'J I i 'J/ "7" / SECTION Z -

---3. ms_ I I 3PAOS _ /
---'--"---- 4. 934 -1 J G _/ R. S60

-- 5. _| i| 4 PADS TYP

8 PLACES

• 424
8 PLACES

DETAI L W - W

S_E.tA,LW--_[_

&

• 18|

- 4. 767 --

.,.'------ 3.917 -----..--+
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I 5 I 4 I 3 I 2 l t

/

6

t

I
I

Jl

.10 X 45"

4 PLACES

R. 2_5B TYP

PREPARE HOLE AND INSTALL HELI r.,OIL ]I'¢3ERT

=1185-2CN _164 ("8-32 X 1D LONG) PER HS33537.

TAP DRILL TO GO THRU

4 PLACES 1'4_KED J

75

6.475

m

r[I z

8. 450 ___

/-----PREPARE HOLE AND INSTALL HELI-COIL INSERT

/'1185-2CN E1£4 ('8-32 X ID LONG) PER NS33537.

G PLACES EACH SIDE TOTAL 12 P_RKED N

_lS. Br

/ \-l/b '"
• _ 1---1 325l - , _:-__ r

6.5(;7 =

7. 8s_

6. INSTALL HELI-COIL INSERTS AFTER FINAL
FI NI SH.

5.11 FIN]SPa CHEI,_rCAL FILN PER HIL-C-5541 CLASS 3.
5.1 PAINT FLAT BLACK PER SR 67q-11174

EXCEPT SURFACES i'4¢¢_ED 6.
T PA!NT FROM ALL HOLES.

4. ig STRESS RELI EVE PER SRiD842.
4.1 ROUGHIq_lglE TO kdTl_N .nrd OF F]NIgfEO SUI_N_..
4. 2 STRESS RELIEVE PER SP,B842 PAR 3. I. r-_
4.3 SENR-FIN_- I'_CHINE TO WITHIN ._

DF FINISHED SU_N:K.
4. 4 TEMPERATURE CY_E PER Sl1142 PAR 3. I. 511
4.5 FINISH mCHINE.

3. ALL DI HENS] Ol,_- APPLY AT 68" Ff 2B" r.,1.
2. PIEr"ENARK PART NO..(TAG OR BN;I,PER 5GiJZll_

METHOD 4.
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